NAG Fortran SMP Library, Release 2, Library Contents

Chapter A00 – Library Identification

A00AAF Prints details of the NAG Fortran Library implementation

Chapter A02 – Complex Arithmetic

A02AAF	Square root of complex number
--------	-------------------------------

- ${\tt A02ABF} \qquad {\rm Modulus \ of \ complex \ number}$
- A02ACF Quotient of two complex numbers

Chapter C02 – Zeros of Polynomials

C02AFF	All zeros of complex polynomial, modified Laguerre method
C02AGF	All zeros of real polynomial, modified Laguerre method
C02AHF	All zeros of complex quadratic

C02AJF All zeros of real quadratic

Chapter C05 – Roots of One or More Transcendental Equations

CO5ADF CO5AGF	Zero of continuous function in given interval, Bus and Dekker algorithm Zero of continuous function, Bus and Dekker algorithm, from given starting value, binary search for interval
CO5AJF	Zero of continuous function, continuation method, from a given starting value
CO5AVF	Binary search for interval containing zero of continuous function (reverse communication)
CO5AXF	Zero of continuous function by continuation method, from given starting value (reverse
	communication)
C05AZF	Zero in given interval of continuous function by Bus and Dekker algorithm (reverse
	communication)
C05NBF	Solution of system of nonlinear equations using function values only (easy-to-use)
CO5NCF	Solution of system of nonlinear equations using function values only (comprehensive)
C05NDF	Solution of system of nonlinear equations using function values only (reverse communication)
C05PBF	Solution of system of nonlinear equations using first derivatives (easy-to-use)
C05PCF	Solution of system of nonlinear equations using first derivatives (comprehensive)
C05PDF	Solution of system of nonlinear equations using first derivatives (reverse communication)
C05ZAF	Check user's routine for calculating first derivatives

Chapter C06 – Summation of Series

CO6BAF CO6DBF	Acceleration of convergence of sequence, Shanks' transformation and epsilon algorithm Sum of a Chebyshev series
COODBF COOEAF	Sum of a Chebysnev series Single one-dimensional real discrete Fourier transform, no extra workspace
COGEBF	Single one-dimensional Hermitian discrete Fourier transform, no extra workspace
COGECF	Single one-dimensional complex discrete Fourier transform, no extra workspace
CO6EKF	Circular convolution or correlation of two real vectors, no extra workspace
C06FAF	Single one-dimensional real discrete Fourier transform, extra workspace for greater speed
C06FBF	Single one-dimensional Hermitian discrete Fourier transform, extra workspace for greater speed
C06FCF	Single one-dimensional complex discrete Fourier transform, extra workspace for greater speed
C06FFF	One-dimensional complex discrete Fourier transform of multi-dimensional data
C06FJF	Multi-dimensional complex discrete Fourier transform of multi-dimensional data
C06FKF	Circular convolution or correlation of two real vectors, extra workspace for greater speed
C06FPF	Multiple one-dimensional real discrete Fourier transforms
C06FQF	Multiple one-dimensional Hermitian discrete Fourier transforms
C06FRF	Multiple one-dimensional complex discrete Fourier transforms
C06FUF	Two-dimensional complex discrete Fourier transform
C06FXF	Three-dimensional complex discrete Fourier transform
C06GBF	Complex conjugate of Hermitian sequence

C06GCF	Complex conjugate of complex sequence
C06GQF	Complex conjugate of multiple Hermitian sequences
C06GSF	Convert Hermitian sequences to general complex sequences
C06HAF	Discrete sine transform
C06HBF	Discrete cosine transform
C06HCF	Discrete quarter-wave sine transform
C06HDF	Discrete quarter-wave cosine transform
CO6LAF	Inverse Laplace transform, Crump's method
CO6LBF	Inverse Laplace transform, modified Weeks' method
C06LCF	Evaluate inverse Laplace transform as computed by C06LBF
C06PAF	Single one-dimensional real and Hermitian complex discrete Fourier transform, using complex
	data format for Hermitian sequences
C06PCF	Single one-dimensional complex discrete Fourier transform, complex data format
C06PFF	One-dimensional complex discrete Fourier transform of multi-dimensional data (using complex
	data type)
C06PJF	Multi-dimensional complex discrete Fourier transform of multi-dimensional data (using complex
	data type)
C06PKF	Circular convolution or correlation of two complex vectors
C06PPF	Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using
	complex data format for Hermitian sequences
C06PQF	Multiple one-dimensional real and Hermitian complex discrete Fourier transforms, using
	complex data format for Hermitian sequences and sequences stored as columns
C06PRF	Multiple one-dimensional complex discrete Fourier transforms using complex data format
C06PSF	Multiple one-dimensional complex discrete Fourier transforms using complex data format and
	sequences stored as columns
C06PUF	Two-dimensional complex discrete Fourier transform, complex data format
C06PXF	Three-dimensional complex discrete Fourier transform, complex data format
COGRAF	Discrete sine transform (easy-to-use)
C06RBF	Discrete cosine transform (easy-to-use)
C06RCF	Discrete quarter-wave sine transform (easy-to-use)
~ ~ ~ ~ ~ ~	

CO6RDF Discrete quarter-wave cosine transform (easy-to-use)

Chapter D01 – Quadrature

D01AHF	One-dimensional quadrature, adaptive, finite interval, strategy due to Patterson, suitable for
	well-behaved integrands
D01AJF	One-dimensional quadrature, adaptive, finite interval, strategy due to Piessens and de Doncker,

- allowing for badly-behaved integrands D01AKF One-dimensional quadrature, adaptive, finite interval, method suitable for oscillating functions
- D01ALF
 One-dimensional quadrature, adaptive, finite interval, allowing for singularities at user-specified break-points
- D01AMF One-dimensional quadrature, adaptive, infinite or semi-infinite interval
- D01ANF One-dimensional quadrature, adaptive, finite interval, weight function $\cos(\omega x)$ or $\sin(\omega x)$
- D01APF One-dimensional quadrature, adaptive, finite interval, weight function with end-point singularities of algebraico-logarithmic type
- D01AQF One-dimensional quadrature, adaptive, finite interval, weight function 1/(x c), Cauchy principal value (Hilbert transform)
- ${\tt D01ARF} \qquad {\rm One-dimensional\ quadrature,\ non-adaptive,\ finite\ interval\ with\ provision\ for\ indefinite\ integrals}$
- D01ASF One-dimensional quadrature, adaptive, semi-infinite interval, weight function $\cos(\omega x)$ or $\sin(\omega x)$
- D01ATF One-dimensional quadrature, adaptive, finite interval, variant of D01AJF efficient on vector machines
- D01AUF One-dimensional quadrature, adaptive, finite interval, variant of D01AKF efficient on vector machines
- D01BAF One-dimensional Gaussian quadrature
- D01BBF Pre-computed weights and abscissae for Gaussian quadrature rules, restricted choice of rule
- D01BCF Calculation of weights and abscissae for Gaussian quadrature rules, general choice of rule
- D01BDF One-dimensional quadrature, non-adaptive, finite interval
- D01DAF Two-dimensional quadrature, finite region
- ${\tt D01EAF} \qquad {\rm Multi-dimensional\ adaptive\ quadrature\ over\ hyper-rectangle,\ multiple\ integrands}$

- D01FBF Multi-dimensional Gaussian quadrature over hyper-rectangle
- D01FCF Multi-dimensional adaptive quadrature over hyper-rectangle
- D01FDF Multi-dimensional quadrature, Sag–Szekeres method, general product region or *n*-sphere
- D01GAF One-dimensional quadrature, integration of function defined by data values, Gill–Miller method
- D01GBF Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method
- D01GCF Multi-dimensional quadrature, general product region, number-theoretic methodD01GDF Multi-dimensional quadrature, general product region, number-theoretic method, variant of
- D01GCF efficient on vector machines
- D01GYF Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is prime
- D01GZF Korobov optimal coefficients for use in D01GCF or D01GDF, when number of points is product of two primes
- D01JAF Multi-dimensional quadrature over an *n*-sphere, allowing for badly-behaved integrands
- D01PAF Multi-dimensional quadrature over an *n*-simplex

Chapter D02 – Ordinary Differential Equations

D02AGF ODEs, boundary value problem, shooting and matching technique, allowing interior matching point, general parameters to be determined D02BGF ODEs, IVP, Runge-Kutta-Merson method, until a component attains given value (simple driver) D02BHF ODEs, IVP, Runge–Kutta–Merson method, until function of solution is zero (simple driver) D02BJF ODEs, IVP, Runge–Kutta method, until function of solution is zero, integration over range with intermediate output (simple driver) ODEs, IVP, Adams method, until function of solution is zero, intermediate output (simple D02CJF driver) D02EJF ODEs, stiff IVP, BDF method, until function of solution is zero, intermediate output (simple driver) D02GAF ODEs, boundary value problem, finite difference technique with deferred correction, simple nonlinear problem ODEs, boundary value problem, finite difference technique with deferred correction, general D02GBF linear problem D02HAF ODEs, boundary value problem, shooting and matching, boundary values to be determined D02HBF ODEs, boundary value problem, shooting and matching, general parameters to be determined D02JAF ODEs, boundary value problem, collocation and least-squares, single nth-order linear equation D02JBF ODEs, boundary value problem, collocation and least-squares, system of first-order linear equations D02KAF Second-order Sturm–Liouville problem, regular system, finite range, eigenvalue only D02KDF Second-order Sturm-Liouville problem, regular/singular system, finite/infinite range, eigenvalue only, user-specified break-points Second-order Sturm–Liouville problem, regular/singular system, finite/infinite range, eigen-D02KEF value and eigenfunction, user-specified break-points D02LAF Second-order ODEs, IVP, Runge–Kutta–Nystrom method D02LXF Second-order ODEs, IVP, set-up for D02LAF D02LYF Second-order ODEs, IVP, diagnostics for D02LAF D02LZF Second-order ODEs, IVP, interpolation for D02LAF ODEs, IVP, DASSL method, set-up for D02M-N routines D02MVF ODEs, IVP, interpolation for D02M-N routines, natural interpolant D02MZF Explicit ODEs, stiff IVP, full Jacobian (comprehensive) D02NBF D02NCF Explicit ODEs, stiff IVP, banded Jacobian (comprehensive) D02NDF Explicit ODEs, stiff IVP, sparse Jacobian (comprehensive) D02NGF Implicit/algebraic ODEs, stiff IVP, full Jacobian (comprehensive) D02NHF Implicit/algebraic ODEs, stiff IVP, banded Jacobian (comprehensive) D02NJF Implicit/algebraic ODEs, stiff IVP, sparse Jacobian (comprehensive) D02NMF Explicit ODEs, stiff IVP (reverse communication, comprehensive) Implicit/algebraic ODEs, stiff IVP (reverse communication, comprehensive) D02NNF ODEs, IVP, for use with D02M-N routines, sparse Jacobian, enquiry routine D02NRF D02NSF ODEs, IVP, for use with D02M-N routines, full Jacobian, linear algebra set-up D02NTF ODEs, IVP, for use with D02M-N routines, banded Jacobian, linear algebra set-up D02NUF ODEs, IVP, for use with D02M–N routines, sparse Jacobian, linear algebra set-up

- D02NVF ODEs, IVP, BDF method, set-up for D02M–N routines
- DO2NWF ODEs, IVP, Blend method, set-up for D02M-N routines
- $\texttt{D02NXF} \qquad \text{ODEs, IVP, sparse Jacobian, linear algebra diagnostics, for use with D02M-N routines}$
- D02NYF ODEs, IVP, integrator diagnostics, for use with D02M–N routines
- D02NZF ODEs, IVP, set-up for continuation calls to integrator, for use with D02M–N routines
- D02PCF ODEs, IVP, Runge–Kutta method, integration over range with output
- ${\tt D02PDF} \qquad {\rm ODEs,\, IVP,\, Runge-Kutta\ method,\, integration\ over\ one\ step}$
- D02PVF ODEs, IVP, set-up for D02PCF and D02PDF
- DO2PWF ODEs, IVP, resets end of range for DO2PDF
- D02PXF ODEs, IVP, interpolation for D02PDF
- D02PYF ODEs, IVP, integration diagnostics for D02PCF and D02PDF
- D02PZF ODEs, IVP, error assessment diagnostics for D02PCF and D02PDF
- D02QFF ODEs, IVP, Adams method with root-finding (forward communication, comprehensive)
- D02QGF ODEs, IVP, Adams method with root-finding (reverse communication, comprehensive)
- D02QWF ODEs, IVP, set-up for D02QFF and D02QGF
- D02QXF ODEs, IVP, diagnostics for D02QFF and D02QGF
- D02QYF ODEs, IVP, root-finding diagnostics for D02QFF and D02QGF
- $\texttt{D02QZF} \qquad \text{ODEs, IVP, interpolation for } \texttt{D02QFF} \text{ or } \texttt{D02QGF}$
- D02RAF ODEs, general nonlinear boundary value problem, finite difference technique with deferred correction, continuation facility
- D02SAF ODEs, boundary value problem, shooting and matching technique, subject to extra algebraic equations, general parameters to be determined
- D02TGF nth-order linear ODEs, boundary value problem, collocation and least-squares
- D02TKF ODEs, general nonlinear boundary value problem, collocation technique
- D02TVF ODEs, general nonlinear boundary value problem, set-up for D02TKF
- D02TXF ODEs, general nonlinear boundary value problem, continuation facility for D02TKF
- D02TYF ODEs, general nonlinear boundary value problem, interpolation for D02TKF
- D02TZF ODEs, general nonlinear boundary value problem, diagnostics for D02TKF
- D02XJF ODEs, IVP, interpolation for D02M–N routines, natural interpolant
- $\tt D02XKF$ ODEs, IVP, interpolation for D02M–N routines, C_1 interpolant
- D02ZAF ODEs, IVP, weighted norm of local error estimate for D02M–N routines

Chapter D03 – Partial Differential Equations

- DOSEAF Elliptic PDE, Laplace's equation, two-dimensional arbitrary domain **DO3EBF** Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional molecule, iterate to convergence **DO3ECF** Elliptic PDE, solution of finite difference equations by SIP for seven-point three-dimensional molecule, iterate to convergence Elliptic PDE, solution of finite difference equations by a multigrid technique **DO3EDF DO3EEF** Discretize a second-order elliptic PDE on a rectangle DO3FAF Elliptic PDE, Helmholtz equation, three-dimensional Cartesian co-ordinates Triangulation of plane region DO3MAF General system of parabolic PDEs, method of lines, finite differences, one space variable D03PCF D03PDF General system of parabolic PDEs, method of lines, Chebyshev C^0 collocation, one space variable **D03PEF** General system of first-order PDEs, method of lines, Keller box discretisation, one space variable **D03PFF** General system of convection-diffusion PDEs with source terms in conservative form, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable **DO3PHF** General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, one space variable General system of parabolic PDEs, coupled DAEs, method of lines, Chebyshev C^0 collocation, D03PJF one space variable General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, **DO3PKF** one space variable D03PLF General system of convection-diffusion PDEs with source terms in conservative form, coupled
- D03PLF General system of convection-diffusion PDEs with source terms in conservative form, coupled DAEs, method of lines, upwind scheme using numerical flux function based on Riemann solver, one space variable

DO3PPF	General system of parabolic PDEs, coupled DAEs, method of lines, finite differences, remeshing, one space variable
DO3PRF	General system of first-order PDEs, coupled DAEs, method of lines, Keller box discretisation, remeshing, one space variable
DO3PSF	General system of convection-diffusion PDEs with source terms in conservative form, coupled DAEs, method of lines, upwind scheme using numerical flux function based on Riemann solver, remeshing, one space variable
DO3PUF	Roe's approximate Riemann solver for Euler equations in conservative form, for use with D03PFF, D03PLF and D03PSF
DO3PVF	Osher's approximate Riemann solver for Euler equations in conservative form, for use with D03PFF, D03PLF and D03PSF
DO3PWF	Modified HLL Riemann solver for Euler equations in conservative form, for use with D03PFF, D03PLF and D03PSF
DO3PXF	Exact Riemann Solver for Euler equations in conservative form, for use with D03PFF, D03PLF and D03PSF
DO3PYF	PDEs, spatial interpolation with D03PDF or D03PJF
D03PZF	PDEs, spatial interpolation with D03PCF, D03PEF, D03PFF, D03PHF, D03PKF, D03PLF, D03PPF, D03PRF or D03PSF
DO3RAF	General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectangular region
DO3RBF	General system of second-order PDEs, method of lines, finite differences, remeshing, two space variables, rectilinear region
DO3RYF	Check initial grid data in D03RBF
DO3RZF	Extract grid data from D03RBF
DO3UAF	Elliptic PDE, solution of finite difference equations by SIP, five-point two-dimensional molecule, one iteration
DO3UBF	Elliptic PDE, solution of finite difference equations by SIP, seven-point three-dimensional molecule, one iteration

Chapter D04 – Numerical Differentiation

D04AAF Numerical differentiation, derivatives up to order 14, function of one real variable

Chapter D05 – Integral Equations

DO5AAF	Linear non-singular Fredholm integral equation, second kind, split kernel
D05ABF	Linear non-singular Fredholm integral equation, second kind, smooth kernel
D05BAF	Nonlinear Volterra convolution equation, second kind
D05BDF	Nonlinear convolution Volterra–Abel equation, second kind, weakly singular
D05BEF	Nonlinear convolution Volterra–Abel equation, first kind, weakly singular
D05BWF	Generate weights for use in solving Volterra equations
D05BYF	Generate weights for use in solving weakly singular Abel-type equations

Chapter E01 – Interpolation

- E01AAF Interpolated values, Aitken's technique, unequally spaced data, one variable
- E01ABF Interpolated values, Everett's formula, equally spaced data, one variable
- E01AEF Interpolating functions, polynomial interpolant, data may include derivative values, one variable
- E01BAF Interpolating functions, cubic spline interpolant, one variable
- E01BEF Interpolating functions, monotonicity-preserving, piecewise cubic Hermite, one variable
- E01BFF Interpolated values, interpolant computed by E01BEF, function only, one variable
- E01BGF Interpolated values, interpolant computed by E01BEF, function and first derivative, one variable
- E01BHF Interpolated values, interpolant computed by E01BEF, definite integral, one variable
- E01DAF Interpolating functions, fitting bicubic spline, data on rectangular grid
- E01RAF Interpolating functions, rational interpolant, one variable
- E01RBF Interpolated values, evaluate rational interpolant computed by E01RAF, one variable
- E01SAF Interpolating functions, method of Renka and Cline, two variables
- E01SBF Interpolated values, evaluate interpolant computed by E01SAF, two variables
- E01SEF Interpolating functions, modified Shepard's method, two variables

- E01SFF Interpolated values, evaluate interpolant computed by E01SEF, two variables
- ${\tt E01SGF} \qquad {\rm Interpolating\ functions,\ modified\ Shepard's\ method,\ two\ variables}$
- E01SHF Interpolated values, evaluate interpolant computed by E01SGF, function and first derivatives, two variables
- E01TGF Interpolating functions, modified Shepard's method, three variables
- E01THF Interpolated values, evaluate interpolant computed by E01TGF, function and first derivatives, three variables

Chapter E02 – Curve and Surface Fitting

E02ACF	Minimax	curve fit	by	polynomials
--------	---------	-----------	----	-------------

- E02ADF Least-squares curve fit, by polynomials, arbitrary data points
- E02AEF Evaluation of fitted polynomial in one variable from Chebyshev series form (simplified parameter list)
- E02AFF Least-squares polynomial fit, special data points (including interpolation)
- E02AGF Least-squares polynomial fit, values and derivatives may be constrained, arbitrary data points
- E02AHF Derivative of fitted polynomial in Chebyshev series form
- E02AJF Integral of fitted polynomial in Chebyshev series form
- E02AKF Evaluation of fitted polynomial in one variable from Chebyshev series form
- E02BAF Least-squares curve cubic spline fit (including interpolation)
- E02BBF Evaluation of fitted cubic spline, function only
- E02BCF Evaluation of fitted cubic spline, function and derivatives
- E02BDF Evaluation of fitted cubic spline, definite integral
- E02BEF Least-squares cubic spline curve fit, automatic knot placement
- E02CAF Least-squares surface fit by polynomials, data on lines
- E02CBF Evaluation of fitted polynomial in two variables
- E02DAF Least-squares surface fit, bicubic splines
- E02DCF Least-squares surface fit by bicubic splines with automatic knot placement, data on rectangular grid
- E02DDF Least-squares surface fit by bicubic splines with automatic knot placement, scattered data
- E02DEF Evaluation of fitted bicubic spline at a vector of points
- E02DFF Evaluation of fitted bicubic spline at a mesh of points
- E02GAF L_1 -approximation by general linear function
- E02GBF L_1 -approximation by general linear function subject to linear inequality constraints
- E02GCF L_{∞} -approximation by general linear function
- E02RAF Padé-approximants
- EO2RBF Evaluation of fitted rational function as computed by EO2RAF
- E02ZAF Sort two-dimensional data into panels for fitting bicubic splines

Chapter E04 – Minimizing or Maximizing a Function

- E04ABF Minimum, function of one variable using function values only
- E04BBF Minimum, function of one variable, using first derivative
- E04CCF Unconstrained minimum, simplex algorithm, function of several variables using function values only (comprehensive)
- E04DGF Unconstrained minimum, preconditioned conjugate gradient algorithm, function of several variables using first derivatives (comprehensive)
- E04DJF Read optional parameter values for E04DGF from external file
- E04DKF Supply optional parameter values to E04DGF
- E04FCF Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm using function values only (comprehensive)
- E04FYF Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm using function values only (easy-to-use)
- E04GBF Unconstrained minimum of a sum of squares, combined Gauss–Newton and quasi-Newton algorithm using first derivatives (comprehensive)
- E04GDF Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton algorithm using first derivatives (comprehensive)
- E04GYF Unconstrained minimum of a sum of squares, combined Gauss–Newton and quasi-Newton algorithm, using first derivatives (easy-to-use)

E04GZF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton
FOAUGE	algorithm using first derivatives (easy-to-use)
E04HCF E04HDF	Check user's routine for calculating first derivatives of function Check user's routine for calculating second derivatives of function
E04HDF E04HEF	Unconstrained minimum of a sum of squares, combined Gauss–Newton and modified Newton
EV4nEr	algorithm, using second derivatives (comprehensive)
E04HYF	Unconstrained minimum of a sum of squares, combined Gauss-Newton and modified Newton
	algorithm, using second derivatives (easy-to-use)
E04JYF	Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using function
	values only (easy-to-use)
E04KDF	Minimum, function of several variables, modified Newton algorithm, simple bounds, using first
	derivatives (comprehensive)
E04KYF	Minimum, function of several variables, quasi-Newton algorithm, simple bounds, using first
	derivatives (easy-to-use)
E04KZF	Minimum, function of several variables, modified Newton algorithm, simple bounds, using first
EQ41 DE	derivatives (easy-to-use) Minimum function of general variables, modified Newton algorithm, simple bounds, using first
E04LBF	Minimum, function of several variables, modified Newton algorithm, simple bounds, using first and second derivatives (comprehensive)
E04LYF	Minimum, function of several variables, modified Newton algorithm, simple bounds, using first
	and second derivatives (easy-to-use)
E04MFF	LP problem (dense)
E04MGF	Read optional parameter values for E04MFF from external file
E04MHF	Supply optional parameter values to E04MFF
E04MZF	Converts MPSX data file defining LP or QP problem to format required by E04NKF
E04NCF	Convex QP problem or linearly-constrained linear least-squares problem (dense)
E04NDF	Read optional parameter values for E04NCF from external file
E04NEF	Supply optional parameter values to E04NCF
E04NFF	QP problem (dense)
E04NGF	Read optional parameter values for E04NFF from external file
E04NHF	Supply optional parameter values to E04NFF
EO4NKF	LP or QP problem (sparse)
E04NLF	Read optional parameter values for E04NKF from external file
E04NMF	Supply optional parameter values to E04NKF
E04UCF	Minimum, function of several variables, sequential QP method, nonlinear constraints, using
EQUIDE	function values and optionally first derivatives (forward communication, comprehensive) Read optional parameter values for E04UCF or E04UFF from external file
E04UDF E04UEF	Supply optional parameter values to E04UCF or E04UFF
E040EF E04UFF	Minimum, function of several variables, sequential QP method, nonlinear constraints, using
L04011	function values and optionally first derivatives (reverse communication, comprehensive)
E04UGF	NLP problem (sparse)
E04UHF	Read optional parameter values for E04UGF from external file
E04UJF	Supply optional parameter values to E04UGF
E04UNF	Minimum of a sum of squares, nonlinear constraints, sequential QP method, using function
	values and optionally first derivatives (comprehensive)
E04UQF	Read optional parameter values for E04UNF from external file
E04URF	Supply optional parameter values to E04UNF
E04XAF	Estimate (using numerical differentiation) gradient and/or Hessian of a function
E04YAF	Check user's routine for calculating Jacobian of first derivatives
E04YBF	Check user's routine for calculating Hessian of a sum of squares
E04YCF	Covariance matrix for nonlinear least-squares problem (unconstrained)
E04ZCF	Check user's routines for calculating first derivatives of function and constraints

Chapter F01 – Matrix Factorizations

- F01ABF Inverse of real symmetric positive-definite matrix using iterative refinement
- F01ADF Inverse of real symmetric positive-definite matrix
- F01BLF Pseudo-inverse and rank of real m by n matrix $(m \ge n)$
- F01BRF LU factorization of real sparse matrix
- ${\tt F01BSF} \qquad LU {\rm \ factorization\ of\ real\ sparse\ matrix\ with\ known\ sparsity\ pattern}$

- F01BUF $ULDL^TU^T$ factorization of real symmetric positive-definite band matrixF01BVFReduction to standard form, generalized real symmetric-definite banded eigenproblemF01CKFMatrix multiplicationF01CRFMatrix transpositionF01CTFSum or difference of two real matrices, optional scaling and transpositionF01CWFSum or difference of two complex matrices, optional scaling and transpositionF01LEFLU factorization of real tridiagonal matrix
- F01LHF LU factorization of real almost block diagonal matrix
- F01MCF LDL^{T} factorization of real symmetric positive-definite variable-bandwidth matrix
- F01QGF RQ factorization of real m by n upper trapezoidal matrix $(m \le n)$
- F01QJF RQ factorization of real m by n matrix $(m \le n)$
- F01QKF Operations with orthogonal matrices, form rows of Q, after RQ factorization by F01QJF
- FOIRGF RQ factorization of complex m by n upper trapezoidal matrix $(m \le n)$
- FO1RJF RQ factorization of complex m by n matrix $(m \le n)$
- FO1RKF Operations with unitary matrices, form rows of Q, after RQ factorization by F01RJF
- F01ZAF Convert real matrix between packed triangular and square storage schemes
- F01ZBF Convert complex matrix between packed triangular and square storage schemes
- F01ZCF Convert real matrix between packed banded and rectangular storage schemes
- F01ZDF Convert complex matrix between packed banded and rectangular storage schemes

Chapter F02 – Eigenvalues and Eigenvectors

F02BJF	All eigenvalues and optionally eigenvectors of generalized eigenproblem by QZ algorithm, real matrices (Black Box)
F02EAF	All eigenvalues and Schur factorization of real general matrix (Black Box)
F02EBF	All eigenvalues and eigenvectors of real general matrix (Black Box)
F02ECF	Selected eigenvalues and eigenvectors of real nonsymmetric matrix (Black Box)
F02FAF	All eigenvalues and eigenvectors of real symmetric matrix (Black Box)
F02FCF	Selected eigenvalues and eigenvectors of real symmetric matrix (Black Box)
F02FDF	All eigenvalues and eigenvectors of real symmetric-definite generalized problem (Black Box)
F02FHF	All eigenvalues of generalized banded real symmetric-definite eigenproblem (Black Box)
F02FJF	Selected eigenvalues and eigenvectors of sparse symmetric eigenproblem (Black Box)
F02GAF	All eigenvalues and Schur factorization of complex general matrix (Black Box)
F02GBF	All eigenvalues and eigenvectors of complex general matrix (Black Box)
F02GCF	Selected eigenvalues and eigenvectors of complex nonsymmetric matrix (Black Box)
F02GJF	All eigenvalues and optionally eigenvectors of generalized complex eigenproblem by QZ
102031	algorithm (Black Box)
F02HAF	All eigenvalues and eigenvectors of complex Hermitian matrix (Black Box)
F02HCF	Selected eigenvalues and eigenvectors of complex Hermitian matrix (Black Box)
F02HDF	All eigenvalues and eigenvectors of complex Hermitian definite generalized problem (Black Box)
F02SDF	Eigenvector of generalized real banded eigenproblem by inverse iteration
F02WDF	QR factorization, possibly followed by SVD
F02WDF F02WEF	SVD of real matrix (Black Box)
F02WUF	SVD of real upper triangular matrix (Black Box)
F02XEF	SVD of complex matrix (Black Box)

F02XUF SVD of complex upper triangular matrix (Black Box)

Chapter F03 – Determinants

- FO3AAF Determinant of real matrix (Black Box)
- FO3ABF Determinant of real symmetric positive-definite matrix (Black Box)
- FO3ACF Determinant of real symmetric positive-definite band matrix (Black Box)
- FO3ADF Determinant of complex matrix (Black Box)
- FO3AEF LL^T factorization and determinant of real symmetric positive-definite matrix
- FO3AFF LU factorization and determinant of real matrix

Chapter F04 – Simultaneous Linear Equations

- FO4AAF Solution of real simultaneous linear equations with multiple right-hand sides (Black Box)
- F04ABF Solution of real symmetric positive-definite simultaneous linear equations with multiple righthand sides using iterative refinement (Black Box)
- F04ACF Solution of real symmetric positive-definite banded simultaneous linear equations with multiple right-hand sides (Black Box)
- FO4ADF Solution of complex simultaneous linear equations with multiple right-hand sides (Black Box)
- F04AEF Solution of real simultaneous linear equations with multiple right-hand sides using iterative refinement (Black Box)
- F04AFF Solution of real symmetric positive-definite simultaneous linear equations using iterative refinement (coefficient matrix already factorized by F03AEF)
- F04AGF Solution of real symmetric positive-definite simultaneous linear equations (coefficient matrix already factorized by F03AEF)
- F04AHF Solution of real simultaneous linear equations using iterative refinement (coefficient matrix already factorized by F03AFF)
- F04AJF Solution of real simultaneous linear equations (coefficient matrix already factorized by F03AFF)
- F04AMF Least-squares solution of m real equations in n unknowns, rank $= n, m \ge n$ using iterative refinement (Black Box)
- F04ARF Solution of real simultaneous linear equations, one right-hand side (Black Box)
- F04ASF Solution of real symmetric positive-definite simultaneous linear equations, one right-hand side using iterative refinement (Black Box)
- F04ATF Solution of real simultaneous linear equations, one right-hand side using iterative refinement (Black Box)
- FO4AXF Solution of real sparse simultaneous linear equations (coefficient matrix already factorized)
- F04EAF Solution of real tridiagonal simultaneous linear equations, one right-hand side (Black Box)
- F04FAF Solution of real symmetric positive-definite tridiagonal simultaneous linear equations, one righthand side (Black Box)
- F04FEF Solution of the Yule–Walker equations for real symmetric positive-definite Toeplitz matrix, one right-hand side
- F04FFF Solution of real symmetric positive-definite Toeplitz system, one right-hand side
- F04JAF Minimal least-squares solution of m real equations in n unknowns, rank $\leq n, m \geq n$
- F04JDF Minimal least-squares solution of m real equations in n unknowns, rank $\leq n, m \geq n$
- F04JGF Least-squares (if rank = n) or minimal least-squares (if rank < n) solution of m real equations in n unknowns, rank $\leq n, m \geq n$
- F04JLF Real general Gauss–Markov linear model (including weighted least-squares)
- F04JMF Equality-constrained real linear least-squares problem
- F04KLF Complex general Gauss–Markov linear model (including weighted least-squares)
- F04KMF Equality-constrained complex linear least-squares problem
- F04LEF Solution of real tridiagonal simultaneous linear equations (coefficient matrix already factorized by F01LEF)
- F04LHF Solution of real almost block diagonal simultaneous linear equations (coefficient matrix already factorized by F01LHF)
- F04MCF Solution of real symmetric positive-definite variable-bandwidth simultaneous linear equations (coefficient matrix already factorized by F01MCF)
- F04MEF Update solution of the Yule–Walker equations for real symmetric positive-definite Toeplitz matrix
- ${\tt F04MFF} \qquad {\rm Update\ solution\ of\ real\ symmetric\ positive-definite\ Toeplitz\ system}$
- F04QAF Sparse linear least-squares problem, m real equations in n unknowns
- F04YAF Covariance matrix for linear least-squares problems, m real equations in n unknowns
- F04YCF Norm estimation (for use in condition estimation), real matrix
- F04ZCF Norm estimation (for use in condition estimation), complex matrix

$Chapter \ F05-Orthogonalisation$

 ${\tt F05AAF} \qquad {\rm Gram-Schmidt\ orthogonalisation\ of\ }n\ {\rm vectors\ of\ order\ }m$

Chapter F06 – Linear Algebra Support Routines

-	
F06AAF	(SROTG/DROTG) Generate real plane rotation
F06BAF	Generate real plane rotation, storing tangent
F06BCF	Recover cosine and sine from given real tangent
F06BEF	Generate real Jacobi plane rotation
F06BHF	Apply real similarity rotation to 2 by 2 symmetric matrix
F06BLF	Compute quotient of two real scalars, with overflow flag
F06BMF	Compute Euclidean norm from scaled form
F06BNF	Compute square root of $(a^2 + b^2)$, real a and b
F06BPF	Compute eigenvalue of 2 by 2 real symmetric matrix
F06CAF	Generate complex plane rotation, storing tangent, real cosine
F06CBF	Generate complex plane rotation, storing tangent, real sine
	Recover cosine and sine from given complex tangent, real cosine
F06CCF	
F06CDF	Recover cosine and sine from given complex tangent, real sine
F06CHF	Apply complex similarity rotation to 2 by 2 Hermitian matrix
F06CLF	Compute quotient of two complex scalars, with overflow flag
F06DBF	Broadcast scalar into integer vector
F06DFF	Copy integer vector
F06EAF	(SDOT/DDOT) Dot product of two real vectors
F06ECF	(SAXPY/DAXPY) Add scalar times real vector to real vector
F06EDF	(SSCAL/DSCAL) Multiply real vector by scalar
F06EFF	(SCOPY/DCOPY) Copy real vector
F06EGF	(SSWAP/DSWAP) Swap two real vectors
F06EJF	(SNRM2/DNRM2) Compute Euclidean norm of real vector
F06EKF	(SASUM/DASUM) Sum absolute values of real vector elements
F06EPF	(SROT/DROT) Apply real plane rotation
F06ERF	(SDOTI/DDOTI) Dot product of two real sparse vectors
F06ETF	(SAXPYI/DAXPYI) Add scalar times real sparse vector to real sparse vector
F06EUF	(SGTHR/DGTHR) Gather real sparse vector
F06EVF	(SGTHRZ/DGTHRZ) Gather and set to zero real sparse vector
F06EWF	(SSCTR/DSCTR) Scatter real sparse vector
F06EXF	(SROTI/DROTI) Apply plane rotation to two real sparse vectors
F06FAF	Compute cosine of angle between two real vectors
F06FBF	Broadcast scalar into real vector
F06FCF	Multiply real vector by diagonal matrix
F06FDF	Multiply real vector by scalar, preserving input vector
F06FGF	Negate real vector
F06FJF	Update Euclidean norm of real vector in scaled form
F06FKF	Compute weighted Euclidean norm of real vector
F06FLF	Elements of real vector with largest and smallest absolute value
F06FPF	Apply real symmetric plane rotation to two vectors
F06FQF	Generate sequence of real plane rotations
F06FRF	Generate real elementary reflection, NAG style
F06FSF	Generate real elementary reflection, LINPACK style
F06FTF	Apply real elementary reflection, NAG style
F06FUF	Apply real elementary reflection, LINPACK style
FOGGAF	(CDOTU/ZDOTU) Dot product of two complex vectors, unconjugated
F06GBF	(CDOTC/ZDOTC) Dot product of two complex vectors, unconjugated (CDOTC/ZDOTC) Dot product of two complex vectors, conjugated
	(CAXPY/ZAXPY) Add scalar times complex vector to complex vector
F06GCF	(CSCAL/ZSCAL) Multiply complex vector by complex scalar
F06GDF	
F06GFF	(CCOPY/ZCOPY) Copy complex vector (CSWAP/ZSWAP) Swap two complex vectors
FO6GGF	
F06GRF	(CDOTUI/ZDOTUI) Dot product of two complex sparse vector, unconjugated
F06GSF	(CDOTCI/ZDOTCI) Dot product of two complex sparse vector, conjugated
F06GTF	(CAXPYI/ZAXPYI) Add scalar times complex sparse vector to complex sparse vector
F06GUF	(CGTHR/ZGTHR) Gather complex sparse vector
FO6GVF	(CGTHRZ/ZGTHRZ) Gather and set to zero complex sparse vector
F06GWF	(CSCTR/ZSCTR) Scatter complex sparse vector

F06HBF Broadcast scalar into complex vector F06HCF Multiply complex vector by complex diagonal matrix Multiply complex vector by complex scalar, preserving input vector F06HDF F06HGF Negate complex vector F06HPF Apply complex plane rotation F06HQF Generate sequence of complex plane rotations F06HRF Generate complex elementary reflection Apply complex elementary reflection F06HTF F06JDF (CSSCAL/ZDSCAL) Multiply complex vector by real scalar F06JJF (SCNRM2/DZNRM2) Compute Euclidean norm of complex vector (SCASUM/DZASUM) Sum absolute values of complex vector elements F06JKF F06JLF (ISAMAX/IDAMAX) Index, real vector element with largest absolute value (ICAMAX/IZAMAX) Index, complex vector element with largest absolute value F06JMF F06KCF Multiply complex vector by real diagonal matrix F06KDF Multiply complex vector by real scalar, preserving input vector F06KFF Copy real vector to complex vector F06KJF Update Euclidean norm of complex vector in scaled form Last non-negligible element of real vector F06KLF Apply real plane rotation to two complex vectors F06KPF (SGEMV/DGEMV) Matrix-vector product, real rectangular matrix F06PAF (SGBMV/DGBMV) Matrix-vector product, real rectangular band matrix F06PBF F06PCF (SSYMV/DSYMV) Matrix-vector product, real symmetric matrix F06PDF (SSBMV/DSBMV) Matrix-vector product, real symmetric band matrix F06PEF (SSPMV/DSPMV) Matrix-vector product, real symmetric packed matrix F06PFF (STRMV/DTRMV) Matrix-vector product, real triangular matrix (STBMV/DTBMV) Matrix-vector product, real triangular band matrix F06PGF F06PHF (STPMV/DTPMV) Matrix-vector product, real triangular packed matrix (STRSV/DTRSV) System of equations, real triangular matrix F06PJF F06PKF (STBSV/DTBSV) System of equations, real triangular band matrix F06PLF (STPSV/DTPSV) System of equations, real triangular packed matrix F06PMF (SGER/DGER) Rank-1 update, real rectangular matrix F06PPF (SSYR/DSYR) Rank-1 update, real symmetric matrix F06PQF (SSPR/DSPR) Rank-1 update, real symmetric packed matrix F06PRF (SSYR2/DSYR2) Rank-2 update, real symmetric matrix F06PSF (SSPR2/DSPR2) Rank-2 update, real symmetric packed matrix Matrix copy, real rectangular or trapezoidal matrix F06QFF F06QHF Matrix initialisation, real rectangular matrix F06QJF Permute rows or columns, real rectangular matrix, permutations represented by an integer array F06QKF Permute rows or columns, real rectangular matrix, permutations represented by a real array F06QMF Orthogonal similarity transformation of real symmetric matrix as a sequence of plane rotations F06QPF QR factorization by sequence of plane rotations, rank-1 update of real upper triangular matrix F06QQF QR factorization by sequence of plane rotations, real upper triangular matrix augmented by a full row F06QRF QR or RQ factorization by sequence of plane rotations, real upper Hessenberg matrix F06QSF QR or RQ factorization by sequence of plane rotations, real upper spiked matrix F06QTF QR factorization of UZ or RQ factorization of ZU, U real upper triangular, Z a sequence of plane rotations F06QVF Compute upper Hessenberg matrix by sequence of plane rotations, real upper triangular matrix F06QWF Compute upper spiked matrix by sequence of plane rotations, real upper triangular matrix F06QXF Apply sequence of plane rotations, real rectangular matrix F06RAF 1-norm, ∞ -norm, Frobenius norm, largest absolute element, real general matrix F06RBF 1-norm, ∞ -norm, Frobenius norm, largest absolute element, real band matrix F06RCF 1-norm, ∞ -norm, Frobenius norm, largest absolute element, real symmetric matrix F06RDF 1-norm, ∞ -norm, Frobenius norm, largest absolute element, real symmetric matrix, packed storage F06REF 1-norm, ∞ -norm, Frobenius norm, largest absolute element, real symmetric band matrix F06RJF 1-norm, ∞ -norm, Frobenius norm, largest absolute element, real trapezoidal/triangular matrix

F06RKF	1-norm, ∞-norm, Frobenius norm, largest absolute element, real triangular matrix, packed storage
F06RLF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, real triangular band matrix
F06RMF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, real Hessenberg matrix
F06SAF	(CGEMV/ZGEMV) Matrix-vector product, complex rectangular matrix
F06SBF	(CGBMV/ZGBMV) Matrix-vector product, complex rectangular band matrix
F06SCF	(CHEMV/ZHEMV) Matrix-vector product, complex Hermitian matrix
F06SDF	(CHBMV/ZHBMV) Matrix-vector product, complex Hermitian band matrix
F06SEF	(CHPMV/ZHPMV) Matrix-vector product, complex Hermitian packed matrix
F06SFF	(CTRMV/ZTRMV) Matrix-vector product, complex triangular matrix
F06SGF	(CTBMV/ZTBMV) Matrix-vector product, complex triangular band matrix
F06SHF	(CTPMV/ZTPMV) Matrix-vector product, complex triangular band matrix (CTPMV/ZTPMV) Matrix-vector product, complex triangular packed matrix
F06SJF	(CTRSV/ZTRSV) System of equations, complex triangular matrix
F06SKF	(CTBSV/ZTBSV) System of equations, complex triangular hadrix (CTBSV/ZTBSV) System of equations, complex triangular band matrix
F06SLF	(CTPSV/ZTPSV) System of equations, complex triangular packed matrix
FO6SMF	(CGERU/ZGERU) Rank-1 update, complex rectangular matrix, unconjugated vector
FO6SNF	(CGERC/ZGERC) Rank-1 update, complex rectangular matrix, conjugated vector
F06SPF	(CHER/ZHER) Rank-1 update, complex Hermitian matrix
F06SQF	(CHPR/ZHPR) Rank-1 update, complex Hermitian packed matrix
F06SRF	(CHER2/ZHER2) Rank-2 update, complex Hermitian matrix
F06SSF	(CHPR2/ZHPR2) Rank-2 update, complex Hermitian packed matrix
F06TFF	Matrix copy, complex rectangular or trapezoidal matrix
F06THF	Matrix initialisation, complex rectangular matrix
F06TMF	Unitary similarity transformation of Hermitian matrix as a sequence of plane rotations
F06TPF	QR factorization by sequence of plane rotations, rank-1 update of complex upper triangular
	matrix
F06TQF	QRxk factorization by sequence of plane rotations, complex upper triangular matrix augmented
	by a full row
F06TRF	QR or RQ factorization by sequence of plane rotations, complex upper Hessenberg matrix
F06TSF	QR or RQ factorization by sequence of plane rotations, complex upper spiked matrix
F06TTF	QR factorization of UZ or RQ factorization of ZU , U complex upper triangular, Z a sequence
	of plane rotations
F06TVF	Compute upper Hessenberg matrix by sequence of plane rotations, complex upper triangular
	matrix
F06TWF	Compute upper spiked matrix by sequence of plane rotations, complex upper triangular matrix
F06TXF	Apply sequence of plane rotations, complex rectangular matrix, real cosine and complex sine
F06TYF	Apply sequence of plane rotations, complex rectangular matrix, real cosine and complex sine
FOGUAF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex general matrix
F06UBF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex general matrix 1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex band matrix
F06UCF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex band matrix 1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex Hermitian matrix
F06UDF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex Hermitian matrix, packed
	storage
F06UEF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex Hermitian band matrix
F06UFF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex symmetric matrix
F06UGF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex symmetric matrix, packed
	storage
F06UHF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex symmetric band matrix
F06UJF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex trapezoidal/triangular
	matrix
F06UKF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex triangular matrix, packed
	storage
F06ULF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex triangular band matrix
F06UMF	1-norm, ∞ -norm, Frobenius norm, largest absolute element, complex Hessenberg matrix
F06VJF	Permute rows or columns, complex rectangular matrix, permutations represented by an integer
	array
F06VKF	Permute rows or columns, complex rectangular matrix, permutations represented by a real
	array
F06VXF	Apply sequence of plane rotations, complex rectangular matrix, real cosine and sine

- F06YAF (SGEMM/DGEMM) Matrix-matrix product, two real rectangular matrices
- F06YCF (SSYMM/DSYMM) Matrix-matrix product, one real symmetric matrix, one real rectangular matrix
- F06YFF (STRMM/DTRMM) Matrix-matrix product, one real triangular matrix, one real rectangular matrix
- F06YJF (STRSM/DTRSM) Solves system of equations with multiple right-hand sides, real triangular coefficient matrix
- F06YPF (SSYRK/DSYRK) Rank-k update of real symmetric matrix
- F06YRF (SSYR2K/DSYR2K) Rank-2k update of real symmetric matrix
- F06ZAF (CGEMM/ZGEMM) Matrix-matrix product, two complex rectangular matrices
- F06ZCF (CHEMM/ZHEMM) Matrix-matrix product, one complex Hermitian matrix, one complex rectangular matrix
- F06ZFF (CTRMM/ZTRMM) Matrix-matrix product, one complex triangular matrix, one complex rectangular matrix
- F06ZJF (CTRSM/ZTRSM) Solves system of equations with multiple right-hand sides, complex triangular coefficient matrix
- F06ZPF (CHERK/ZHERK) Rank-k update of complex Hermitian matrix
- F06ZRF (CHER2K/ZHER2K) Rank-2k update of complex Hermitian matrix
- F06ZTF (CSYMM/ZSYMM) Matrix-matrix product, one complex symmetric matrix, one complex rectangular matrix
- F06ZUF (CSYRK/ZSYRK) Rank-k update of complex symmetric matrix
- F06ZWF (CSYR2K/ZHER2K) Rank-2k update of complex symmetric matrix

Chapter F07 – Linear Equations (LAPACK)

F07ADF (SGETRF/DGETRF) LU factorization of real m by n matrix (SGETRS/DGETRS) Solution of real system of linear equations, multiple right-hand sides, F07AEF matrix already factorized by F07ADF (SGECON/DGECON) Estimate condition number of real matrix, matrix already factorized by F07AGF F07ADF F07AHF (SGERFS/DGERFS) Refined solution with error bounds of real system of linear equations, multiple right-hand sides (SGETRI/DGETRI) Inverse of real matrix, matrix already factorized by F07ADF F07AJF F07ARF (CGETRF/ZGETRF) LU factorization of complex m by n matrix F07ASF (CGETRS/ZGETRS) Solution of complex system of linear equations, multiple right-hand sides, matrix already factorized by F07ARF F07AUF (CGECON/ZGECON) Estimate condition number of complex matrix, matrix already factorized by F07ARF (CGERFS/ZGERFS) Refined solution with error bounds of complex system of linear equations, F07AVF multiple right-hand sides F07AWF (CGETRI/ZGETRI) Inverse of complex matrix, matrix already factorized by F07ARF F07BDF (SGBTRF/DGBTRF) LU factorization of real m by n band matrix (SGBTRS/DGBTRS) Solution of real band system of linear equations, multiple right-hand F07BEF sides, matrix already factorized by F07BDF (SGBCON/DGBCON) Estimate condition number of real band matrix, matrix already F07BGF factorized by F07BDF F07BHF (SGBRFS/DGBRFS) Refined solution with error bounds of real band system of linear equations, multiple right-hand sides (CGBTRF/ZGBTRF) LU factorization of complex m by n band matrix F07BRF (CGBTRS/ZGBTRS) Solution of complex band system of linear equations, multiple right-hand F07BSF sides, matrix already factorized by F07BRF F07BUF (CGBCON/ZGBCON) Estimate condition number of complex band matrix, matrix already factorized by F07BRF F07BVF (CGBRFS/ZGBRFS) Refined solution with error bounds of complex band system of linear equations, multiple right-hand sides F07FDF (SPOTRF/DPOTRF) Cholesky factorization of real symmetric positive-definite matrix F07FEF (SPOTRS/DPOTRS) Solution of real symmetric positive-definite system of linear equations, multiple right-hand sides, matrix already factorized by F07FDF

F07FGF	(SPOCON/DPOCON) Estimate condition number of real symmetric positive-definite matrix,
	matrix already factorized by F07FDF
F07FHF	(SPORFS/DPORFS) Refined solution with error bounds of real symmetric positive-definite
F07FJF	system of linear equations, multiple right-hand sides (SPOTRI/DPOTRI) Inverse of real symmetric positive-definite matrix, matrix already factor-
10/101	ized by F07FDF
F07FRF	(CPOTRF/ZPOTRF) Cholesky factorization of complex Hermitian positive-definite matrix
F07FSF	(CPOTRS/ZPOTRS) Solution of complex Hermitian positive-definite system of linear equa-
	tions, multiple right-hand sides, matrix already factorized by F07FRF
F07FUF	(CPOCON/ZPOCON) Estimate condition number of complex Hermitian positive-definite
	matrix, matrix already factorized by F07FRF
F07FVF	(CPORFS/ZPORFS) Refined solution with error bounds of complex Hermitian positive-definite
F07FWF	system of linear equations, multiple right-hand sides (CPOTRI/ZPOTRI) Inverse of complex Hermitian positive-definite matrix, matrix already
FOIFWF	factorized by F07FRF
F07GDF	(SPPTRF/DPPTRF) Cholesky factorization of real symmetric positive-definite matrix, packed
	storage
F07GEF	(SPPTRS/DPPTRS) Solution of real symmetric positive-definite system of linear equations,
	multiple right-hand sides, matrix already factorized by F07GDF, packed storage
F07GGF	(SPPCON/DPPCON) Estimate condition number of real symmetric positive-definite matrix,
	matrix already factorized by F07GDF, packed storage
F07GHF	(SPPRFS/DPPRFS) Refined solution with error bounds of real symmetric positive-definite
	system of linear equations, multiple right-hand sides, packed storage
F07GJF	(SPPTRI/DPPTRI) Inverse of real symmetric positive-definite matrix, matrix already factor- ized by F07GDF, packed storage
F07GRF	(CPPTRF/ZPPTRF) Cholesky factorization of complex Hermitian positive-definite matrix,
1070101	packed storage
F07GSF	(CPPTRS/ZPPTRS) Solution of complex Hermitian positive-definite system of linear equa-
	tions, multiple right-hand sides, matrix already factorized by F07GRF, packed storage
F07GUF	(CPPCON/ZPPCON) Estimate condition number of complex Hermitian positive-definite
	matrix, matrix already factorized by F07GRF, packed storage
F07GVF	(CPPRFS/ZPPRFS) Refined solution with error bounds of complex Hermitian positive-definite
F07GWF	system of linear equations, multiple right-hand sides, packed storage (CPPTRI/ZPPTRI) Inverse of complex Hermitian positive-definite matrix, matrix already
FUIGWF	factorized by F07GRF, packed storage
F07HDF	(SPBTRF/DPBTRF) Cholesky factorization of real symmetric positive-definite band matrix
F07HEF	(SPBTRS/DPBTRS) Solution of real symmetric positive-definite band system of linear
	equations, multiple right-hand sides, matrix already factorized by F07HDF
F07HGF	(SPBCON/DPBCON) Estimate condition number of real symmetric positive-definite band
	matrix, matrix already factorized by F07HDF
F07HHF	(SPBRFS/DPBRFS) Refined solution with error bounds of real symmetric positive-definite
FOZUDE	band system of linear equations, multiple right-hand sides
F07HRF	(CPBTRF/ZPBTRF) Cholesky factorization of complex Hermitian positive-definite band matrix
F07HSF	(CPBTRS/ZPBTRS) Solution of complex Hermitian positive-definite band system of linear
1071101	equations, multiple right-hand sides, matrix already factorized by F07HRF
F07HUF	(CPBCON/ZPBCON) Estimate condition number of complex Hermitian positive-definite band
	matrix, matrix already factorized by F07HRF
F07HVF	(CPBRFS/ZPBRFS) Refined solution with error bounds of complex Hermitian positive-definite
	band system of linear equations, multiple right-hand sides
F07MDF	(SSYTRF/DSYTRF) Bunch–Kaufman factorization of real symmetric indefinite matrix
F07MEF	(SSYTRS/DSYTRS) Solution of real symmetric indefinite system of linear equations, multiple
F07MGF	right-hand sides, matrix already factorized by F07MDF (SSYCON/DSYCON) Estimate condition number of real symmetric indefinite matrix, matrix
1 0 1 1 01	already factorized by F07MDF
F07MHF	(SSYRFS/DSYRFS) Refined solution with error bounds of real symmetric indefinite system of
	linear equations, multiple right-hand sides

F07MJF	(SSYTRI/DSYTRI) Inverse of real symmetric indefinite matrix, matrix already factorized by F07MDF $$
F07MRF	(CHETRF/ZHETRF) Bunch–Kaufman factorization of complex Hermitian indefinite matrix
F07MSF	(CHETRS/ZHETRS) Solution of complex Hermitian indefinite system of linear equations,
	multiple right-hand sides, matrix already factorized by F07MRF
F07MUF	(CHECON/ZHECON) Estimate condition number of complex Hermitian indefinite matrix,
1 0 1 11 01	matrix already factorized by F07MRF
F07MVF	(CHERFS/ZHERFS) Refined solution with error bounds of complex Hermitian indefinite
10/1101	system of linear equations, multiple right-hand sides
F07MWF	(CHETRI/ZHETRI) Inverse of complex Hermitian indefinite matrix, matrix already factorized
1.01.11.11	by F07MRF
F07NRF	(CSYTRF/ZSYTRF) Bunch–Kaufman factorization of complex symmetric matrix
	(CSYTRS/ZSYTRS) Solution of complex symmetric system of linear equations, multiple right-
F07NSF	hand sides, matrix already factorized by F07NRF
FOZNIE	
F07NUF	(CSYCON/ZSYCON) Estimate condition number of complex symmetric matrix, matrix already factorized by E07NDE
POZNUP	factorized by F07NRF
FO7NVF	(CSYRFS/ZSYRFS) Refined solution with error bounds of complex symmetric system of linear
DOZNUD	equations, multiple right-hand sides
FO7NWF	(CSYTRI/ZSYTRI) Inverse of complex symmetric matrix, matrix already factorized by
	F07NRF
F07PDF	(SSPTRF/DSPTRF) Bunch–Kaufman factorization of real symmetric indefinite matrix, packed
F07PEF	(SSPTRS/DSPTRS) Solution of real symmetric indefinite system of linear equations, multiple
	right-hand sides, matrix already factorized by F07PDF, packed storage
F07PGF	(SSPCON/DSPCON) Estimate condition number of real symmetric indefinite matrix, matrix
	already factorized by F07PDF, packed storage
F07PHF	(SSPRFS/DSPRFS) Refined solution with error bounds of real symmetric indefinite system of
	linear equations, multiple right-hand sides, packed storage
F07PJF	(SSPTRI/DSPTRI) Inverse of real symmetric indefinite matrix, matrix already factorized by
	F07PDF, packed storage
F07PRF	(CHPTRF/ZHPTRF) Bunch–Kaufman factorization of complex Hermitian indefinite matrix,
	packed storage
F07PSF	(CHPTRS/ZHPTRS) Solution of complex Hermitian indefinite system of linear equations,
	multiple right-hand sides, matrix already factorized by F07PRF, packed storage
F07PUF	(CHPCON/ZHPCON) Estimate condition number of complex Hermitian indefinite matrix,
	matrix already factorized by F07PRF, packed storage
F07PVF	(CHPRFS/ZHPRFS) Refined solution with error bounds of complex Hermitian indefinite
	system of linear equations, multiple right-hand sides, packed storage
F07PWF	(CHPTRI/ZHPTRI) Inverse of complex Hermitian indefinite matrix, matrix already factorized
	by F07PRF, packed storage
F07QRF	(CSPTRF/ZSPTRF) Bunch–Kaufman factorization of complex symmetric matrix, packed
	storage
F07QSF	(CSPTRS/ZSPTRS) Solution of complex symmetric system of linear equations, multiple right-
	hand sides, matrix already factorized by F07QRF, packed storage
F07QUF	(CSPCON/ZSPCON) Estimate condition number of complex symmetric matrix, matrix already
	factorized by F07QRF, packed storage
F07QVF	(CSPRFS/ZSPRFS) Refined solution with error bounds of complex symmetric system of linear
	equations, multiple right-hand sides, packed storage
F07QWF	(CSPTRI/ZSPTRI) Inverse of complex symmetric matrix, matrix already factorized by
	F07QRF, packed storage
F07TEF	(STRTRS/DTRTRS) Solution of real triangular system of linear equations, multiple right-hand
	sides
F07TGF	(STRCON/DTRCON) Estimate condition number of real triangular matrix
F07THF	(STRRFS/DTRRFS) Error bounds for solution of real triangular system of linear equations,
	multiple right-hand sides
F07TJF	(STRTRI/DTRTRI) Inverse of real triangular matrix
F07TSF	(CTRTRS/ZTRTRS) Solution of complex triangular system of linear equations, multiple right-
	hand sides

F07TUF	(CTRCON/ZTRCON) Estimate condition number of complex triangular matrix
F07TVF	(CTRRFS/ZTRRFS) Error bounds for solution of complex triangular system of linear
	equations, multiple right-hand sides
F07TWF	(CTRTRI/ZTRTRI) Inverse of complex triangular matrix
F07UEF	(STPTRS/DTPTRS) Solution of real triangular system of linear equations, multiple right-hand
	sides, packed storage
F07UGF	(STPCON/DTPCON) Estimate condition number of real triangular matrix, packed storage
F07UHF	(STPRFS/DTPRFS) Error bounds for solution of real triangular system of linear equations,
5051175	multiple right-hand sides, packed storage
F07UJF	(STPTRI/DTPTRI) Inverse of real triangular matrix, packed storage
F07USF	(CTPTRS/ZTPTRS) Solution of complex triangular system of linear equations, multiple right-
	hand sides, packed storage
F07UUF	(CTPCON/ZTPCON) Estimate condition number of complex triangular matrix, packed storage
F07UVF	(CTPRFS/ZTPRFS) Error bounds for solution of complex triangular system of linear
	equations, multiple right-hand sides, packed storage
F07UWF	(CTPTRI/ZTPTRI) Inverse of complex triangular matrix, packed storage
F07VEF	(STBTRS/DTBTRS) Solution of real band triangular system of linear equations, multiple
	right-hand sides
F07VGF	(STBCON/DTBCON) Estimate condition number of real band triangular matrix
F07VHF	(STBRFS/DTBRFS) Error bounds for solution of real band triangular system of linear
	equations, multiple right-hand sides
F07VSF	(CTBTRS/ZTBTRS) Solution of complex band triangular system of linear equations, multiple
	right-hand sides
F07VUF	(CTBCON/ZTBCON) Estimate condition number of complex band triangular matrix
F07VVF	(CTBRFS/ZTBRFS) Error bounds for solution of complex band triangular system of linear
	equations, multiple right-hand sides

Chapter F08 – Least-squares and Eigenvalue Problems (LAPACK)

F08AEF	(SGEQRF/DGEQRF) QR factorization of real general rectangular matrix
F08AFF	(SORGQR/DORGQR) Form all or part of orthogonal Q from QR factorization determined by
	F08AEF or F08BEF
F08AGF	(SORMQR/DORMQR) Apply orthogonal transformation determined by F08AEF or F08BEF
FO8AHF	(SGELQF/DGELQF) LQ factorization of real general rectangular matrix
F08AJF	(SORGLQ/DORGLQ) Form all or part of orthogonal Q from LQ factorization determined by
	F08AHF
F08AKF	(SORMLQ/DORMLQ) Apply orthogonal transformation determined by F08AHF
F08ASF	(CGEQRF/ZGEQRF) QR factorization of complex general rectangular matrix
F08ATF	(CUNGQR/ZUNGQR) Form all or part of unitary Q from QR factorization determined by
	F08ASF or F08BSF
F08AUF	(CUNMQR/ZUNMQR) Apply unitary transformation determined by F08ASF or F08BSF
FO8AVF	(CGELQF/ZGELQF) LQ factorization of complex general rectangular matrix
FO8AWF	(CUNGLQ/ZUNGLQ) Form all or part of unitary Q from LQ factorization determined by
	F08AVF
F08AXF	(CUNMLQ/ZUNMLQ) Apply unitary transformation determined by F08AVF
F08AXF F08BEF	(SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting
	(SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting $(CGEQPF/ZGEQPF)$ QR factorization of complex general rectangular matrix with column
F08BEF	(SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting $(CGEQPF/ZGEQPF)$ QR factorization of complex general rectangular matrix with column pivoting
F08BEF	(SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting $(CGEQPF/ZGEQPF)$ QR factorization of complex general rectangular matrix with column pivoting $(SSYEVD/DSYEVD)$ All eigenvalues and optionally all eigenvectors of real symmetric matrix,
F08BEF F08BSF	(SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting (SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvectors of real symmetric matrix, using divide and conquer
F08BEF F08BSF	(SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting $(CGEQPF/ZGEQPF)$ QR factorization of complex general rectangular matrix with column pivoting $(SSYEVD/DSYEVD)$ All eigenvalues and optionally all eigenvectors of real symmetric matrix,
F08BEF F08BSF F08FCF	(SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting (SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvectors of real symmetric matrix, using divide and conquer (SSYTRD/DSYTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form
F08BEF F08BSF F08FCF	(SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting (SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvectors of real symmetric matrix, using divide and conquer (SSYTRD/DSYTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form (SORGTR/DORGTR) Generate orthogonal transformation matrix from reduction to tridiag-
F08BEF F08BSF F08FCF F08FEF	(SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting (SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvectors of real symmetric matrix, using divide and conquer (SSYTRD/DSYTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form (SORGTR/DORGTR) Generate orthogonal transformation matrix from reduction to tridiag- onal form determined by F08FEF
F08BEF F08BSF F08FCF F08FEF	(SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting (SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvectors of real symmetric matrix, using divide and conquer (SSYTRD/DSYTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form (SORGTR/DORGTR) Generate orthogonal transformation matrix from reduction to tridiag- onal form determined by F08FEF (SORMTR/DORMTR) Apply orthogonal transformation determined by F08FEF
F08BEF F08BSF F08FCF F08FEF F08FFF	(SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting (SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvectors of real symmetric matrix, using divide and conquer (SSYTRD/DSYTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form (SORGTR/DORGTR) Generate orthogonal transformation matrix from reduction to tridiag- onal form determined by F08FEF (SORMTR/DORMTR) Apply orthogonal transformation determined by F08FEF (CHEEVD/ZHEEVD) All eigenvalues and optionally all eigenvectors of complex Hermitian
F08BEF F08BSF F08FCF F08FEF F08FFF F08FGF	(SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting (SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvectors of real symmetric matrix, using divide and conquer (SSYTRD/DSYTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form (SORGTR/DORGTR) Generate orthogonal transformation matrix from reduction to tridiag- onal form determined by F08FEF (SORMTR/DORMTR) Apply orthogonal transformation determined by F08FEF (CHEEVD/ZHEEVD) All eigenvalues and optionally all eigenvectors of complex Hermitian matrix, using divide and conquer
F08BEF F08BSF F08FCF F08FEF F08FFF F08FGF	 (SGEQPF/DGEQPF) QR factorization of real general rectangular matrix with column pivoting (CGEQPF/ZGEQPF) QR factorization of complex general rectangular matrix with column pivoting (SSYEVD/DSYEVD) All eigenvalues and optionally all eigenvectors of real symmetric matrix, using divide and conquer (SSYTRD/DSYTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal form (SORGTR/DORGTR) Generate orthogonal transformation matrix from reduction to tridiagonal form determined by F08FEF (SORMTR/DORMTR) Apply orthogonal transformation determined by F08FEF (CHEEVD/ZHEEVD) All eigenvalues and optionally all eigenvectors of complex Hermitian

FOOFTE	(CUNCTD /ZUNCTD) Concrete unitary transformation matrix from reduction to tridis good
F08FTF	(CUNGTR/ZUNGTR) Generate unitary transformation matrix from reduction to tridiagonal form determined by F08FSF
F08FUF	(CUNMTR/ZUNMTR) Apply unitary transformation matrix determined by F08FSF
F08GCF	(SSPEVD/DSPEVD) All eigenvalues and optionally all eigenvectors of real symmetric matrix,
	packed storage, using divide and conquer
F08GEF	(SSPTRD/DSPTRD) Orthogonal reduction of real symmetric matrix to symmetric tridiagonal
F08GFF	form, packed storage (SOPGTR/DOPGTR) Generate orthogonal transformation matrix from reduction to tridiago-
1.0001.1	nal form determined by F08GEF
F08GGF	(SOPMTR/DOPMTR) Apply orthogonal transformation determined by F08GEF
F08GQF	(CHPEVD/ZHPEVD) All eigenvalues and optionally all eigenvectors of complex Hermitian
	matrix, packed storage, using divide and conquer
F08GSF	(CHPTRD/ZHPTRD) Unitary reduction of complex Hermitian matrix to real symmetric
F08GTF	tridiagonal form, packed storage (CUPGTR/ZUPGTR) Generate unitary transformation matrix from reduction to tridiagonal
100011	form determined by F08GSF
F08GUF	(CUPMTR/ZUPMTR) Apply unitary transformation matrix determined by F08GSF
F08HCF	(SSBEVD/DSBEVD) All eigenvalues and optionally all eigenvectors of real symmetric band
	matrix, using divide and conquer
F08HEF	(SSBTRD/DSBTRD) Orthogonal reduction of real symmetric band matrix to symmetric
F08HQF	tridiagonal form (CHBEVD/ZHBEVD) All eigenvalues and optionally all eigenvectors of complex Hermitian
1 OOHQI	band matrix, using divide and conquer
F08HSF	(CHBTRD/ZHBTRD) Unitary reduction of complex Hermitian band matrix to real symmetric
	tridiagonal form
F08JCF	(SSTEVD/DSTEVD) All eigenvalues and optionally all eigenvectors of real symmetric tridiag-
EOO IEE	onal matrix, using divide and conquer
F08JEF	(SSTEQR/DSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix, reduced from real symmetric matrix using implicit QL or QR
F08JFF	(SSTERF/DSTERF) All eigenvalues of real symmetric tridiagonal matrix, root-free variant of
	QL or QR
F08JGF	(SPTEQR/DPTEQR) All eigenvalues and eigenvectors of real symmetric positive-definite
	tridiagonal matrix, reduced from real symmetric positive-definite matrix
F08JJF F08JKF	(SSTEBZ/DSTEBZ) Selected eigenvalues of real symmetric tridiagonal matrix by bisection (SSTEIN/DSTEIN) Selected eigenvectors of real symmetric tridiagonal matrix by inverse
FUOJKF	iteration, storing eigenvectors in real array
F08JSF	(CSTEQR/ZSTEQR) All eigenvalues and eigenvectors of real symmetric tridiagonal matrix,
	reduced from complex Hermitian matrix, using implicit QL or QR
F08JUF	(CPTEQR/ZPTEQR) All eigenvalues and eigenvectors of real symmetric positive-definite
	tridiagonal matrix, reduced from complex Hermitian positive-definite matrix
F08JXF	(CSTEIN/ZSTEIN) Selected eigenvectors of real symmetric tridiagonal matrix by inverse iteration, storing eigenvectors in complex array
F08KEF	(SGEBRD/DGEBRD) Orthogonal reduction of real general rectangular matrix to bidiagonal
	form
F08KFF	(SORGBR/DORGBR) Generate orthogonal transformation matrices from reduction to bidiag-
	onal form determined by F08KEF
F08KGF	(SORMBR/DORMBR) Apply orthogonal transformations from reduction to bidiagonal form
F08KSF	determined by F08KEF (CGEBRD/ZGEBRD) Unitary reduction of complex general rectangular matrix to bidiagonal
1 00101	form
F08KTF	(CUNGBR/ZUNGBR) Generate unitary transformation matrices from reduction to bidiagonal
	form determined by F08KSF
F08KUF	(CUNMBR/ZUNMBR) Apply unitary transformations from reduction to bidiagonal form
F08LEF	determined by F08KSF (SGBBRD/DGBBRD) Reduction of real rectangular band matrix to upper bidiagonal form
F08LEF F08LSF	(CGBBRD/ZGBBRD) Reduction of complex rectangular band matrix to upper bidiagonal form
FO8MEF	(SBDSQR/DBDSQR) SVD of real bidiagonal matrix reduced from real general matrix
F08MSF	(CBDSQR/ZBDSQR) SVD of real bidiagonal matrix reduced from complex general matrix

F08NEF F08NFF	(SGEHRD/DGEHRD) Orthogonal reduction of real general matrix to upper Hessenberg form (SORGHR/DORGHR) Generate orthogonal transformation matrix from reduction to Hessen-
FOONCE	berg form determined by F08NEF (SOBMUD (DOBMUD) Apply on the grand transformation matrix from reduction to Haranhang
F08NGF	(SORMHR/DORMHR) Apply orthogonal transformation matrix from reduction to Hessenberg form determined by F08NEF
FO8NHF	(SGEBAL/DGEBAL) Balance real general matrix
FO8NJF	(SGEBAK/DGEBAK) Transform eigenvectors of real balanced matrix to those of original matrix supplied to F08NHF
FO8NSF	(CGEHRD/ZGEHRD) Unitary reduction of complex general matrix to upper Hessenberg form
FO8NTF	(CUNGHR/ZUNGHR) Generate unitary transformation matrix from reduction to Hessenberg form determined by F08NSF
FO8NUF	(CUNMHR/ZUNMHR) Apply unitary transformation matrix from reduction to Hessenberg form determined by F08NSF
FO8NVF	(CGEBAL/ZGEBAL) Balance complex general matrix
FO8NWF	(CGEBAK/ZGEBAK) Transform eigenvectors of complex balanced matrix to those of original matrix supplied to F08NVF
F08PEF	(SHSEQR/DHSEQR) Eigenvalues and Schur factorization of real upper Hessenberg matrix reduced from real general matrix
F08PKF	(SHSEIN/DHSEIN) Selected right and/or left eigenvectors of real upper Hessenberg matrix by inverse iteration
F08PSF	(CHSEQR/ZHSEQR) Eigenvalues and Schur factorization of complex upper Hessenberg matrix
F08PXF	reduced from complex general matrix (CHSEIN/ZHSEIN) Selected right and/or left eigenvectors of complex upper Hessenberg matrix
FUOFAF	by inverse iteration
F08QFF	(STREXC/DTREXC) Reorder Schur factorization of real matrix using orthogonal similarity transformation
F08QGF	(STRSEN/DTRSEN) Reorder Schur factorization of real matrix, form orthonormal basis of
F08QHF	right invariant subspace for selected eigenvalues, with estimates of sensitivities (STRSYL/DTRSYL) Solve real Sylvester matrix equation $AX + XB = C$, A and B are upper
гооцпг	(STASTL/DTASTL) solve real sylvester matrix equation $AX + XD = C$, A and D are upper quasi-triangular or transposes
F08QKF	(STREVC/DTREVC) Left and right eigenvectors of real upper quasi-triangular matrix
F08QLF	(STRSNA/DTRSNA) Estimates of sensitivities of selected eigenvalues and eigenvectors of real upper quasi-triangular matrix
F08QTF	(CTREXC/ZTREXC) Reorder Schur factorization of complex matrix using unitary similarity
F08QUF	transformation (CTRSEN/ZTRSEN) Reorder Schur factorization of complex matrix, form orthonormal basis
100001	of right invariant subspace for selected eigenvalues, with estimates of sensitivities
F08QVF	(CTRSYL/ZTRSYL) Solve complex Sylvester matrix equation $AX + XB = C$, A and B are
F08QXF	upper triangular or conjugate-transposes (CTREVC/ZTREVC) Left and right eigenvectors of complex upper triangular matrix
F08QYF	(CTRSNA/ZTRSNA) Estimates of sensitivities of selected eigenvalues and eigenvectors of
F08SEF	complex upper triangular matrix (SSYGST/DSYGST) Reduction to standard form of real symmetric-definite generalized
100021	eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, B factorized by F07FDF
F08SSF	(CHEGST/ZHEGST) Reduction to standard form of complex Hermitian-definite generalized eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, B factorized by F07FRF
F08TEF	(SSPGST/DSPGST) Reduction to standard form of real symmetric-definite generalized
F08TSF	eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, packed storage, B factorized by F07GDF (CHPGST/ZHPGST) Reduction to standard form of complex Hermitian-definite generalized
FUOISF	eigenproblem $Ax = \lambda Bx$, $ABx = \lambda x$ or $BAx = \lambda x$, packed storage, B factorized by F07GRF
F08UEF	(SSBGST/DSBGST) Reduction of real symmetric-definite banded generalized eigenproblem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C has the same bandwidth as A
F08UFF	(SPBSTF/DPBSTF) Computes a split Cholesky factorization of real symmetric positive-
F08USF	definite band matrix A (CHBGST/ZHBGST) Reduction of complex Hermitian-definite banded generalized eigenprob-
FOOIT	lem $Ax = \lambda Bx$ to standard form $Cy = \lambda y$, such that C has the same bandwidth as A
F08UTF	(CPBSTF/ZPBSTF) Computes a split Cholesky factorization of complex Hermitian positive- definite band matrix A

Chapter F11 – Sparse Linear Algebra

F11BAF	Real sparse nonsymmetric linear systems, set-up for F11BBF
F11BBF	Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS or Bi-CGSTAB
F11BCF	Real sparse nonsymmetric linear systems, diagnostic for F11BBF
F11BDF	Real sparse nonsymmetric linear systems, set-up for F11BEF
F11BEF	Real sparse nonsymmetric linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB or
	TFQMR method
F11BFF	Real sparse nonsymmetric linear systems, diagnostic for F11BEF
F11BRF	Complex sparse non-Hermitian linear systems, set-up for F11BSF
F11BSF	Complex sparse non-Hermitian linear systems, preconditioned RGMRES, CGS, Bi-CGSTAB
	or TFQMR method
F11BTF	Complex sparse non-Hermitian linear systems, diagnostic for F11BSF
F11DAF	Real sparse nonsymmetric linear systems, incomplete LU factorization
F11DBF	Solution of linear system involving incomplete LU preconditioning matrix generated by F11DAF
F11DCF	Solution of real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB method,
111201	preconditioner computed by F11DAF (Black Box)
F11DDF	Solution of linear system involving preconditioning matrix generated by applying SSOR to real
111001	sparse nonsymmetric matrix
F11DEF	Solution of real sparse nonsymmetric linear system, RGMRES, CGS or Bi-CGSTAB method,
I IIDLI	Jacobi or SSOR preconditioner (Black Box)
F11DKF	Real sparse nonsymmetric linear systems, line Jacobi preconditioner
F11DNF	Complex sparse non-Hermitian linear systems, incomplete LU factorization
F11DPF	Solution of complex linear system involving incomplete LU preconditioning matrix generated
I IIDI I	by F11DNF
F11DQF	Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or
I. I I DQI.	TFQMR method, preconditioner computed by F11DNF (Black Box)
F11DRF	Solution of linear system involving preconditioning matrix generated by applying SSOR to
FIIDRF	complex sparse non-Hermitian matrix
F11DSF	Solution of complex sparse non-Hermitian linear system, RGMRES, CGS, Bi-CGSTAB or
FIIDSF	TFQMR method, Jacobi or SSOR preconditioner (Black Box)
	Real sparse symmetric linear systems, set-up for F11GBF
F11GAF	Real sparse symmetric linear systems, preconditioned conjugate gradient or Lanczos
F11GBF	
F11GCF	Real sparse symmetric linear systems, diagnostic for F11GBF
F11GDF	Real sparse symmetric linear systems, set-up for F11GEF
F11GEF	Real sparse symmetric linear systems, preconditioned conjugate gradient or Lanczos, threadsafe Real sparse symmetric linear systems, diagnostic for F11GEF
F11GFF	1 0 0
F11JAF	Real sparse symmetric matrix, incomplete Cholesky factorization
F11JBF	Solution of linear system involving incomplete Cholesky preconditioning matrix generated by F11JAF
F11JCF	Solution of real sparse symmetric linear system, conjugate gradient/Lanczos method, precon-
	ditioner computed by F11JAF (Black Box)
F11JDF	Solution of linear system involving preconditioning matrix generated by applying SSOR to real
	sparse symmetric matrix
F11JEF	Solution of real sparse symmetric linear system, conjugate gradient/Lanczos method, Jacobi or
	SSOR preconditioner (Black Box)
F11JNF	Complex sparse Hermitian matrix, incomplete Cholesky factorization
F11JPF	Solution of complex linear system involving incomplete Cholesky preconditioning matrix
	generated by F11JNF
F11JQF	Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method,
	preconditioner computed by F11JNF (Black Box)
F11JRF	Solution of linear system involving preconditioning matrix generated by applying SSOR to
	complex sparse Hermitian matrix
F11JSF	Solution of complex sparse Hermitian linear system, conjugate gradient/Lanczos method, Jacobi
	or SSOR preconditioner (Black Box)
F11XAF	Real sparse nonsymmetric matrix vector multiply
F11XEF	Real sparse symmetric matrix vector multiply
F11XNF	Complex sparse non-Hermitian matrix vector multiply
F11XSF	Complex sparse Hermitian matrix vector multiply

- F11ZAFReal sparse nonsymmetric matrix reorder routineF11ZBFReal sparse symmetric matrix reorder routineF11ZNFComplex sparse non-Hermitian matrix reorder routine
- F11ZPF Complex sparse Hermitian matrix reorder routine

Chapter G01 – Simple Calculations and Statistical Data

- G01AAF Mean, variance, skewness, kurtosis, etc, one variable, from raw data G01ABF Mean, variance, skewness, kurtosis, etc, two variables, from raw data G01ADF Mean, variance, skewness, kurtosis, etc, one variable, from frequency table G01AEF Frequency table from raw data Two-way contingency table analysis, with χ^2 /Fisher's exact test G01AFF Lineprinter scatterplot of two variables G01AGF G01AHF Lineprinter scatterplot of one variable against Normal scores G01AJF Lineprinter histogram of one variable G01ALF Computes a five-point summary (median, hinges and extremes) G01ARF Constructs a stem and leaf plot G01ASF Constructs a box and whisker plot G01BJF Binomial distribution function G01BKF Poisson distribution function G01BLF Hypergeometric distribution function Normal scores, accurate values G01DAF Normal scores, approximate values G01DBF Normal scores, approximate variance-covariance matrix G01DCF G01DDF Shapiro and Wilk's W test for Normality G01DHF Ranks, Normal scores, approximate Normal scores or exponential (Savage) scores G01EAF Computes probabilities for the standard Normal distribution Computes probabilities for Student's t-distribution G01EBF Computes probabilities for χ^2 distribution G01ECF Computes probabilities for F-distribution G01EDF G01EEF Computes upper and lower tail probabilities and probability density function for the beta distribution G01EFF Computes probabilities for the gamma distribution G01EMF Computes probability for the Studentized range statistic Computes bounds for the significance of a Durbin–Watson statistic G01EPF G01ERF Computes probability for von Mises distribution Computes probabilities for the one-sample Kolmogorov-Smirnov distribution G01EYF Computes probabilities for the two-sample Kolmogorov-Smirnov distribution G01EZF Computes deviates for the standard Normal distribution G01FAF Computes deviates for Student's t-distribution G01FBF Computes deviates for the χ^2 distribution G01FCF G01FDF Computes deviates for the F-distribution Computes deviates for the beta distribution G01FEF G01FFF Computes deviates for the gamma distribution G01FMF Computes deviates for the Studentized range statistic Computes probabilities for the non-central Student's t-distribution G01GBF Computes probabilities for the non-central χ^2 distribution G01GCF Computes probabilities for the non-central F-distribution G01GDF Computes probabilities for the non-central beta distribution G01GEF
- G01HAF Computes probability for the bivariate Normal distribution
- G01HBF Computes probabilities for the multivariate Normal distribution
- G01JCF Computes probability for a positive linear combination of χ^2 variables
- G01JDF Computes lower tail probability for a linear combination of (central) χ^2 variables
- GO1MBF Computes reciprocal of Mills' Ratio
- GO1NAF Cumulants and moments of quadratic forms in Normal variables
- GO1NBF Moments of ratios of quadratic forms in Normal variables, and related statistics

Chapter G02 – Correlation and Regression Analysis

G02BAF	Pearson product-moment correlation coefficients, all variables, no missing values
G02BBF	Pearson product-moment correlation coefficients, all variables, casewise treatment of missing
	values
G02BCF	Pearson product-moment correlation coefficients, all variables, pairwise treatment of missing values
G02BDF	Correlation-like coefficients (about zero), all variables, no missing values
G02BEF	Correlation-like coefficients (about zero), all variables, as missing values
G02BFF	Correlation-like coefficients (about zero), all variables, pairwise treatment of missing values
G02BGF	Pearson product-moment correlation coefficients, subset of variables, no missing values
G02BHF	Pearson product-moment correlation coefficients, subset of variables, casewise treatment of
GOZDIII	missing values
G02BJF	Pearson product-moment correlation coefficients, subset of variables, pairwise treatment of
002201	missing values
G02BKF	Correlation-like coefficients (about zero), subset of variables, no missing values
G02BLF	Correlation-like coefficients (about zero), subset of variables, casewise treatment of missing
	values
G02BMF	Correlation-like coefficients (about zero), subset of variables, pairwise treatment of missing
	values
G02BNF	Kendall/Spearman non-parametric rank correlation coefficients, no missing values, overwriting
	input data
G02BPF	Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing
	values, overwriting input data
G02BQF	Kendall/Spearman non-parametric rank correlation coefficients, no missing values, preserving
	input data
G02BRF	Kendall/Spearman non-parametric rank correlation coefficients, casewise treatment of missing
000000	values, preserving input data
G02BSF	Kendall/Spearman non-parametric rank correlation coefficients, pairwise treatment of missing
	values
GO2BTF	Update a weighted sum of squares matrix with a new observation
G02BUF	Computes a weighted sum of squares matrix
GO2BWF	Computes a correlation matrix from a sum of squares matrix
GO2BXF GO2BYF	Computes (optionally weighted) correlation and covariance matrices Computes partial correlation/variance-covariance matrix from correlation/variance-covariance
GUZDIF	matrix computed by G02BXF
G02CAF	Simple linear regression with constant term, no missing values
G02CBF	Simple linear regression with constant term, no missing values
G02CCF	Simple linear regression with constant term, missing values
G02CDF	Simple linear regression without constant term, missing values
G02CEF	Service routines for multiple linear regression, select elements from vectors and matrices
G02CFF	Service routines for multiple linear regression, re-order elements of vectors and matrices
G02CGF	Multiple linear regression, from correlation coefficients, with constant term
G02CHF	Multiple linear regression, from correlation-like coefficients, without constant term
G02DAF	Fits a general (multiple) linear regression model
G02DCF	Add/delete an observation to/from a general linear regression model
G02DDF	Estimates of linear parameters and general linear regression model from updated model
G02DEF	Add a new variable to a general linear regression model
G02DFF	Delete a variable from a general linear regression model
G02DGF	Fits a general linear regression model for new dependent variable
G02DKF	Estimates and standard errors of parameters of a general linear regression model for given
	constraints
G02DNF	Computes estimable function of a general linear regression model and its standard error
G02EAF	Computes residual sums of squares for all possible linear regressions for a set of independent variables
G02ECF	Calculates R^2 and C_P values from residual sums of squares
G02EEF	Fits a linear regression model by forward selection
G02FAF	Calculates standardized residuals and influence statistics

G02FCF Computes Durbin–Watson test statistic

- G02GAF Fits a generalized linear model with Normal errors
- ${\tt G02GBF} \qquad {\rm Fits \ a \ generalized \ linear \ model \ with \ binomial \ errors}$
- ${\tt GO2GCF} \qquad {\rm Fits \ a \ generalized \ linear \ model \ with \ Poisson \ errors}$
- ${\tt G02GDF} \qquad {\rm Fits \ a \ generalized \ linear \ model \ with \ gamma \ errors}$
- G02GKF Estimates and standard errors of parameters of a general linear model for given constraints
- G02GNF Computes estimable function of a generalized linear model and its standard error
- $\texttt{GO2HAF} \qquad \text{Robust regression, standard } M\text{-estimates}$
- G02HBF Robust regression, compute weights for use with G02HDF
- G02HDF Robust regression, compute regression with user-supplied functions and weights
- $\texttt{G02HFF} \qquad \text{Robust regression, variance-covariance matrix following G02HDF}$
- G02HKF Calculates a robust estimation of a correlation matrix, Huber's weight function
- G02HLF Calculates a robust estimation of a correlation matrix, user-supplied weight function plus derivatives
- ${\tt GO2HMF} \qquad {\rm Calculates\ a\ robust\ estimation\ of\ a\ correlation\ matrix,\ user-supplied\ weight\ function}$

Chapter G03 – Multivariate Methods

- **GO3AAF** Performs principal component analysis
- GO3ACF Performs canonical variate analysis
- **GO3ADF** Performs canonical correlation analysis
- GO3BAF Computes orthogonal rotations for loading matrix, generalized orthomax criterion
- ${\tt GO3BCF} \qquad {\rm Computes\ Procrustes\ rotations}$
- **G03CAF** Computes maximum likelihood estimates of the parameters of a factor analysis model, factor loadings, communalities and residual correlations
- GO3CCF Computes factor score coefficients (for use after GO3CAF)
- GO3DAF Computes test statistic for equality of within-group covariance matrices and matrices for discriminant analysis
- G03DBF Computes Mahalanobis squared distances for group or pooled variance-covariance matrices (for use after G03DAF)
- GO3DCF Allocates observations to groups according to selected rules (for use after G03DAF)
- GO3EAF Computes distance matrix
- G03ECF Hierarchical cluster analysis
- GO3EFF K-means cluster analysis
- GO3EHF Constructs dendrogram (for use after GO3ECF)
- GO3EJF Computes cluster indicator variable (for use after GO3ECF)
- GO3FAF Performs principal co-ordinate analysis, classical metric scaling
- GO3FCF Performs non-metric (ordinal) multidimensional scaling
- GO3ZAF Produces standardized values (z-scores) for a data matrix

Chapter G04 – Analysis of Variance

- GO4AGF Two-way analysis of variance, hierarchical classification, subgroups of unequal size
- G04BBF Analysis of variance, randomized block or completely randomized design, treatment means and standard errors
- G04BCF Analysis of variance, general row and column design, treatment means and standard errors
- G04CAF Analysis of variance, complete factorial design, treatment means and standard errors
- ${\tt G04DAF} \qquad {\tt Computes \ sum \ of \ squares \ for \ contrast \ between \ means}$
- G04DBF Computes confidence intervals for differences between means computed by G04BBF or G04BCF
- GO4EAF Computes orthogonal polynomials or dummy variables for factor/classification variable

Chapter G05 – Random Number Generators

- **G05CAF** Pseudo-random real numbers, uniform distribution over (0,1)
- G05CBF Initialise random number generating routines to give repeatable sequence
- ${\tt G05CCF} \qquad {\rm Initialise\ random\ number\ generating\ routines\ to\ give\ non-repeatable\ sequence}$
- G05CFF Save state of random number generating routines
- G05CGF Restore state of random number generating routines
- $\texttt{G05DAF} \qquad \texttt{Pseudo-random real numbers, uniform distribution over} \ (a,b)$
- G05DBF Pseudo-random real numbers, (negative) exponential distribution

G05DCF	Pseudo-random real numbers, logistic distribution
G05DDF	Pseudo-random real numbers, Normal distribution
G05DEF	Pseudo-random real numbers, log-normal distribution
G05DFF	Pseudo-random real numbers, Cauchy distribution
G05DHF	Pseudo-random real numbers, χ^2 distribution
G05DJF	Pseudo-random real numbers, Student's t-distribution
GO5DKF	Pseudo-random real numbers, F-distribution
G05DPF	Pseudo-random real numbers, Weibull distribution
G05DRF	Pseudo-random integer, Poisson distribution
G05DYF	Pseudo-random integer from uniform distribution
G05DZF	Pseudo-random logical (boolean) value
GO5EAF	Set up reference vector for multivariate Normal distribution
G05EBF	Set up reference vector for generating pseudo-random integers, uniform distribution
G05ECF	Set up reference vector for generating pseudo-random integers, Poisson distribution
G05EDF	Set up reference vector for generating pseudo-random integers, binomial distribution
G05EEF	Set up reference vector for generating pseudo-random integers, negative binomial distribution
G05EFF	Set up reference vector for generating pseudo-random integers, hypergeometric distribution
G05EGF	Set up reference vector for univariate ARMA time series model
G05EHF	Pseudo-random permutation of an integer vector
G05EJF	Pseudo-random sample from an integer vector
GO5EWF	Generate next term from reference vector for ARMA time series model
G05EXF	Set up reference vector from supplied cumulative distribution function or probability distribu-
	tion function
G05EYF	Pseudo-random integer from reference vector
G05EZF	Pseudo-random multivariate Normal vector from reference vector
G05FAF	Generates a vector of random numbers from a uniform distribution
G05FBF	Generates a vector of random numbers from an (negative) exponential distribution
G05FDF	Generates a vector of random numbers from a Normal distribution
G05FEF	Generates a vector of pseudo-random numbers from a beta distribution
G05FFF	Generates a vector of pseudo-random numbers from a gamma distribution
G05FSF	Generates a vector of pseudo-random variates from von Mises distribution
G05GAF	Computes random orthogonal matrix
G05GBF	Computes random correlation matrix
G05HDF	Generates a realisation of a multivariate time series from a VARMA model
G05ZAF	Selection of basic algorithm random number generator or Wichmann–Hill algorithm generators
	for subsequent calls to G05 routines

Chapter G07 – Univariate Estimation

- **G07AAF** Computes confidence interval for the parameter of a binomial distribution
- G07ABF Computes confidence interval for the parameter of a Poisson distribution
- G07BBF Computes maximum likelihood estimates for parameters of the Normal distribution from grouped and/or censored data
- G07BEF Computes maximum likelihood estimates for parameters of the Weibull distribution
- **G07CAF** Computes *t*-test statistic for a difference in means between two Normal populations, confidence interval
- G07DAF Robust estimation, median, median absolute deviation, robust standard deviation
- G07DBF Robust estimation, *M*-estimates for location and scale parameters, standard weight functions
- $\texttt{G07DCF} \qquad \text{Robust estimation}, \, M\text{-estimates for location and scale parameters, user-defined weight functions}$
- $\texttt{G07DDF} \qquad \text{Computes a trimmed and winsorized mean of a single sample with estimates of their variance}$
- G07EAF Robust confidence intervals, one-sample
- ${\tt G07EBF} \qquad {\rm Robust\ confidence\ intervals,\ two-sample}$

Chapter G08 – Nonparametric Statistics

- ${\tt GO8ACF} \qquad {\rm Median\ test\ on\ two\ samples\ of\ unequal\ size}$
- $\texttt{GO8AEF} \qquad \text{Friedman two-way analysis of variance on } k \text{ matched samples}$
- $\texttt{GO8AFF} \qquad \text{Kruskal-Wallis one-way analysis of variance on k samples of unequal size}$

- G08AGF Performs the Wilcoxon one-sample (matched pairs) signed rank test
- $\texttt{GO8AHF} \qquad \text{Performs the Mann-Whitney } U \text{ test on two independent samples}$
- GO8AJF Computes the exact probabilities for the Mann–Whitney U statistic, no ties in pooled sample
- $\texttt{GO8AKF} \qquad \text{Computes the exact probabilities for the Mann–Whitney U statistic, ties in pooled sample}$
- $\texttt{GO8ALF} \qquad \text{Performs the Cochran } Q \text{ test on cross-classified binary data}$
- G08BAF Mood's and David's tests on two samples of unequal size
- ${\tt G08CBF} \qquad {\rm Performs \ the \ one-sample \ Kolmogorov-Smirnov \ test \ for \ standard \ distributions}$
- ${\tt G08CCF} \qquad {\rm Performs \ the \ one-sample \ Kolmogorov-Smirnov \ test \ for \ a \ user-supplied \ distribution}$
- ${\tt G08CDF} \qquad {\rm Performs \ the \ two-sample \ Kolmogorov-Smirnov \ test}$
- **G08CGF** Performs the χ^2 goodness of fit test, for standard continuous distributions
- ${\tt GO8DAF} \qquad {\rm Kendall's \ coefficient \ of \ concordance}$
- GO8EAF Performs the runs up or runs down test for randomness
- **GO8EBF** Performs the pairs (serial) test for randomness
- **GO8ECF** Performs the triplets test for randomness
- **GO8EDF** Performs the gaps test for randomness
- ${\tt GO8RAF} \qquad {\rm Regression} \ {\rm using} \ {\rm ranks}, \ {\rm uncensored} \ {\rm data}$
- GO8RBF Regression using ranks, right-censored data

Chapter G10 – Smoothing in Statistics

- G10ABF Fit cubic smoothing spline, smoothing parameter given
- G10ACF Fit cubic smoothing spline, smoothing parameter estimated
- G10BAF Kernel density estimate using Gaussian kernel
- G10CAF Compute smoothed data sequence using running median smoothers
- G10ZAF Reorder data to give ordered distinct observations

Chapter G11 – Contingency Table Analysis

- G11AAF χ^2 statistics for two-way contingency table
- G11BAF Computes multiway table from set of classification factors using selected statistic
- G11BBF Computes multiway table from set of classification factors using given percentile/quantile
- G11BCF Computes marginal tables for multiway table computed by G11BAF or G11BBF
- G11CAF Returns parameter estimates for the conditional analysis of stratified data
- G11SAF Contingency table, latent variable model for binary data
- G11SBF Frequency count for G11SAF

Chapter G12 – Survival Analysis

- G12AAF Computes Kaplan–Meier (product-limit) estimates of survival probabilities
- G12BAF Fits Cox's proportional hazard model
- G12ZAF Creates the risk sets associated with the Cox proportional hazards model for fixed covariates

Chapter G13 – Time Series Analysis

- G13AAF Univariate time series, seasonal and non-seasonal differencing
- ${\tt G13ABF} \qquad {\rm Univariate\ time\ series,\ sample\ autocorrelation\ function}$
- **G13ACF** Univariate time series, partial autocorrelations from autocorrelations
- ${\tt G13ADF} \qquad {\tt Univariate time series, preliminary estimation, seasonal ARIMA model}$
- G13AEF Univariate time series, estimation, seasonal ARIMA model (comprehensive)
- G13AFF Univariate time series, estimation, seasonal ARIMA model (easy-to-use)
- G13AGF Univariate time series, update state set for forecasting
- G13AHF Univariate time series, forecasting from state set
- G13AJF Univariate time series, state set and forecasts, from fully specified seasonal ARIMA model
- G13ASF Univariate time series, diagnostic checking of residuals, following G13AEF or G13AFF
- ${\tt G13AUF} \qquad {\rm Computes \ quantities \ needed \ for \ range-mean \ or \ standard \ deviation-mean \ plot}$
- G13BAF Multivariate time series, filtering (pre-whitening) by an ARIMA model
- G13BBF Multivariate time series, filtering by a transfer function model
- G13BCF Multivariate time series, cross-correlations
- G13BDF Multivariate time series, preliminary estimation of transfer function model
- G13BEF Multivariate time series, estimation of multi-input model

- G13BGF Multivariate time series, update state set for forecasting from multi-input model
- G13BHF Multivariate time series, forecasting from state set of multi-input model
- G13BJF Multivariate time series, state set and forecasts from fully specified multi-input model
- G13CAF Univariate time series, smoothed sample spectrum using rectangular, Bartlett, Tukey or Parzen lag window
- G13CBF Univariate time series, smoothed sample spectrum using spectral smoothing by the trapezium frequency (Daniell) window
- G13CCF Multivariate time series, smoothed sample cross spectrum using rectangular, Bartlett, Tukey or Parzen lag window
- G13CDF Multivariate time series, smoothed sample cross spectrum using spectral smoothing by the trapezium frequency (Daniell) window
- G13CEF Multivariate time series, cross amplitude spectrum, squared coherency, bounds, univariate and bivariate (cross) spectra
- G13CFF Multivariate time series, gain, phase, bounds, univariate and bivariate (cross) spectra
- **G13CGF** Multivariate time series, noise spectrum, bounds, impulse response function and its standard error
- G13DBF Multivariate time series, multiple squared partial autocorrelations
- G13DCF Multivariate time series, estimation of VARMA model
- G13DJF Multivariate time series, forecasts and their standard errors
- G13DKF Multivariate time series, updates forecasts and their standard errors
- G13DLF Multivariate time series, differences and/or transforms (for use before G13DCF)
- G13DMF Multivariate time series, sample cross-correlation or cross-covariance matrices
- **G13DNF** Multivariate time series, sample partial lag correlation matrices, χ^2 statistics and significance levels
- G13DPF Multivariate time series, partial autoregression matrices
- G13DSF Multivariate time series, diagnostic checking of residuals, following G13DCF
- $\texttt{G13DXF} \qquad \texttt{Calculates the zeros of a vector autoregressive (or moving average) operator}$
- G13EAF Combined measurement and time update, one iteration of Kalman filter, time-varying, square root covariance filter
- G13EBF Combined measurement and time update, one iteration of Kalman filter, time-invariant, square root covariance filter

Chapter H – Operations Research

- H02BBF Integer LP problem (dense)
- H02BFF Interpret MPSX data file defining IP or LP problem, optimize and print solution
- H02BUF Convert MPSX data file defining IP or LP problem to format required by H02BBF or E04MFFH02BVF Print IP or LP solutions with user specified names for rows and columns
- H02BZF Integer programming solution, supplies further information on solution obtained by H02BBF H02CBF Integer QP problem (dense)
- H02CCF Read optional parameter values for H02CBF from external file
- H02CDF Supply optional parameter values to H02CBF
- HO2CEF Integer LP or QP problem (sparse)
- H02CFF Read optional parameter values for H02CEF from external file
- H02CGF Supply optional parameter values to H02CEF
- HO3ABF Transportation problem, modified 'stepping stone' method
- HO3ADF Shortest path problem, Dijkstra's algorithm

Chapter M01 – Sorting

- M01CAF Sort a vector, real numbers
- M01CBF Sort a vector, integer numbers
- M01CCF Sort a vector, character data
- MO1DAF Rank a vector, real numbers
- M01DBF Rank a vector, integer numbers
- MO1DCF Rank a vector, character data
- M01DEF Rank rows of a matrix, real numbers
- M01DFF Rank rows of a matrix, integer numbers
- M01DJF Rank columns of a matrix, real numbers

M01DKF	Rank columns of a matrix, integer numbers
M01DZF	Rank arbitrary data
M01EAF	Rearrange a vector according to given ranks, real numbers
M01EBF	Rearrange a vector according to given ranks, integer numbers
M01ECF	Rearrange a vector according to given ranks, character data
M01EDF	Rearrange a vector according to given ranks, complex numbers
M01ZAF	Invert a permutation
M01ZBF	Check validity of a permutation
M01ZCF	Decompose a permutation into cycles

Chapter P01 – Error Trapping

P01ABF Return value of error indicator/terminate with error message

Chapter S – Approximations of Special Functions

	1 (1 +)
S01BAF	$\ln(1+x)$
S01EAF	Complex exponential, e^z
S07AAF	$\tan x$
S09AAF	$\arcsin x$
S09ABF	arccosx
S10AAF	$\tanh x$
S10ABF	$\sinh x$
S10ACF	$\cosh x$
S11AAF	$\operatorname{arctanh} x$
S11ABF	$\operatorname{arcsinh} x$
S11ACF	$\operatorname{arccosh} x$
S13AAF	Exponential integral $E_1(x)$
S13ACF	Cosine integral $\operatorname{Ci}(x)$
S13ADF	Sine integral $Si(x)$
S14AAF	Gamma function
S14ABF	Log Gamma function
S14ACF	$\psi(x) - \ln x$
S14ADF	Scaled derivatives of $\psi(x)$
S14BAF	Incomplete Gamma functions $P(a, x)$ and $Q(a, x)$
S15ABF	Cumulative normal distribution function $P(x)$
S15ACF	Complement of cumulative normal distribution function $Q(x)$
S15ADF	Complement of error function $\operatorname{erfc}(x)$
S15AEF	Error function $\operatorname{erf}(x)$
S15AFF	Dawson's integral
S15DDF	Scaled complex complement of error function, $\exp(-z^2)\operatorname{erfc}(-iz)$
S17ACF	Bessel function $Y_0(x)$
S17ADF	Bessel function $Y_1(x)$
S17AEF	Bessel function $J_0(x)$
S17AFF	Bessel function $J_1(x)$
S17AGF	Airy function $\operatorname{Ai}(x)$
S17AHF	Airy function $\operatorname{Bi}(x)$
S17AJF	Airy function $\operatorname{Ai'}(x)$
S17AKF	Airy function $\operatorname{Bi}'(x)$
S17DCF	Bessel functions $Y_{\nu+a}(z)$, real $a \ge 0$, complex $z, \nu = 0, 1, 2,$
S17DEF	Bessel functions $J_{\nu+a}(z)$, real $a \ge 0$, complex $z, \nu = 0, 1, 2,$
S17DGF	Airy functions Ai(z) and Ai'(z), complex z $(z = 0, 1, 2,, z)$
S17DHF	Airy functions $Bi(z)$ and $Bi'(z)$, complex z
S17DLF	Hankel functions $H_{\nu+a}^{(j)}(z)$, $j = 1, 2$, real $a \ge 0$, complex $z, \nu = 0, 1, 2, \ldots$ Madified Bergel function $K_{\nu}(z)$
S18ACF	Modified Bessel function $K_0(x)$
S18ADF	Modified Bessel function $K_1(x)$
S18AEF	Modified Bessel function $I_0(x)$
S18AFF	Modified Bessel function $I_1(x)$
S18CCF	Modified Bessel function $e^x K_0(x)$

- **S18CDF** Modified Bessel function $e^x K_1(x)$
- **S18CEF** Modified Bessel function $e^{-|x|}I_0(x)$
- **S18CFF** Modified Bessel function $e^{-|x|}I_1(x)$
- **S18DCF** Modified Bessel functions $K_{\nu+a}(z)$, real $a \ge 0$, complex $z, \nu = 0, 1, 2, ...$
- **S18DEF** Modified Bessel functions $I_{\nu+a}(z)$, real $a \ge 0$, complex $z, \nu = 0, 1, 2, ...$
- **S19AAF** Kelvin function ber x
- **S19ABF** Kelvin function bei x
- S19ACF Kelvin function ker x
- **S19ADF** Kelvin function kei x
- **S20ACF** Fresnel integral S(x)**S20ADF** Fresnel integral C(x)
- **S20ADF** Freshel integral C(x)
- S21BAF Degenerate symmetrised elliptic integral of 1st kind $R_C(x, y)$
- S21BBF Symmetrised elliptic integral of 1st kind $R_F(x, y, z)$
- S21BCF Symmetrised elliptic integral of 2nd kind $R_D(x, y, z)$
- S21BDF Symmetrised elliptic integral of 3rd kind $R_J(x, y, z, r)$
- ${\tt S21CAF} \qquad {\tt Jacobian \ elliptic \ functions \ sn, \ cn \ and \ dn}$

Chapter X01 – Mathematical Constants

X01AAF Provides the mathematical constant π

X01ABF Provides the mathematical constant γ (Euler's Constant)

Chapter X02 – Machine Constants

- X02AHFThe largest permissible argument for sin and cosX02AJFThe machine precision
- XO2AUF The machine precision
- X02AKF The smallest positive model number
- X02ALF The largest positive model number
- X02AMF The safe range parameter
- $\texttt{XO2ANF} \qquad \text{The safe range parameter for complex floating-point arithmetic}$
- X02BBF The largest representable integer
- X02BEF The maximum number of decimal digits that can be represented
- **X02BHF** The floating-point model parameter, b
- $\texttt{XO2BJF} \qquad \text{The floating-point model parameter, } p$
- X02BKF The floating-point model parameter e_{\min}
- X02BLF The floating-point model parameter e_{\max}
- X02DAF Switch for taking precautions to avoid underflow
- X02DJF The floating-point model parameter ROUNDS

Chapter X03 – Inner Products

- X03AAF Real inner product added to initial value, basic/additional precision
- X03ABF Complex inner product added to initial value, basic/additional precision

Chapter X04 – Input/Output Utilities

- X04AAF Return or set unit number for error messages
- X04ABF Return or set unit number for advisory messages
- X04ACF Open unit number for reading, writing or appending, and associate unit with named file
- X04ADF Close file associated with given unit number
- X04BAF Write formatted record to external file
- X04BBF Read formatted record from external file
- X04CAF Print real general matrix (easy-to-use)
- X04CBF Print real general matrix (comprehensive)
- X04CCF Print real packed triangular matrix (easy-to-use)
- X04CDF Print real packed triangular matrix (comprehensive)
- X04CEF Print real packed banded matrix (easy-to-use)
- X04CFF Print real packed banded matrix (comprehensive)
- X04DAF Print complex general matrix (easy-to-use)
- X04DBF Print complex general matrix (comprehensive)

X04DCF	Print complex packed triangular matrix (easy-to-use)
X04DDF	Print complex packed triangular matrix (comprehensive)
X04DEF	Print complex packed banded matrix (easy-to-use)
X04DFF	Print complex packed banded matrix (comprehensive)
X04EAF	Print integer matrix (easy-to-use)
X04EBF	Print integer matrix (comprehensive)

Chapter X05 – Date and Time Utilities

X05AAF	Return date and time as an array of integers
X05ABF	Convert array of integers representing date and time to character string
X05ACF	Compare two character strings representing date and time
X05BAF	Return the CPU time